ERDÖL Entstehung

hey. ich habe von meinem bio-lk-lehrer gehört, das es eine neue theorie über die entstehung von erdöl bzw. Erdgas gibt. er wollt uns dazu nichts weiter sagen, deswegen frage ich hier ob jemand mir ein link dazu geben kann.
da ich nämlich nicht weiß was ich suchen soll, komm ich nicht vorran.
Danke nina

Hallo Nina !

Dazu ein Auszug aus der Zeitschrift ‚Spektrum der Wissenschaft‘, Februar 2004.
Es ging hierbei um Erdölvorkommen in der Tiefsee.
Der komplette Artikel ist im Spektrum der Wissenschaft - Archiv unter
http://www.wissenschaft-online.de/abo/spektrum/archi…
abrufbar, allerdings nur wenn man angemeldet ist (oder dafür zahlt).

Hier der Artikelauschnitt:

Erdöl unter der Tiefsee

[…]

Aber nicht erst die Förderung des Erdöls aus großen Wassertiefen, sondern auch die Suche danach ist bereits sehr schwierig. Im Südatlantik konnten die Prospektoren davon profitieren, dass es den Geologen in den vergangenen Jahrzehnten gelungen ist, immer genauer herauszufinden, wie sich fossile Kohlenwasserstoffe bilden. Einerseits haben sie leistungsfähigere Methoden entwickelt, geologische Strukturen im Untergrund sichtbar zu machen. Andererseits konnten sie die Definition eines „Erdölsystems“ präzisieren.

Der Begriff bezeichnet jenen Teil eines Sedimentbeckens, der alle geologischen Voraussetzungen für die Bildung und Speicherung von Kohlenwasserstoffen erfüllt und in dem zugleich irgendwann die physikalischen und chemischen Bedingungen herrschten, bei denen das Öl oder Gas reifen konnte. Die vier geologischen Voraussetzungen sind ein „Muttergestein“, ein „Speichergestein“ als Teil eines Drainagesystems, ein „Deckgestein“ und eine „Fangstruktur“. Zudem muss das Muttergestein so tief absinken, dass es den hohen Temperaturen ausgesetzt wird, unter denen die chemische Reifung stattfindet.

Sedimentbecken sind gleichsam Dellen in der Erdkruste, entstanden durch geodynamische Vorgänge infolge der Wanderung der großen, starren Lithosphärenplatten, aus denen die feste Erdschale besteht. Zunächst meist von einem Meer bedeckt, füllen sie sich im Verlauf einiger zehn Millionen Jahre mit Ablagerungen: Tonen, Sanden, Kalken und Salzen, die sich schließlich zu Gesteinen verfestigen.

Unter dem Gewicht der Sedimentdecke, die im Durchschnitt um einige Millimeter pro Jahr wächst, vertieft sich die eingedellte Erdkruste zusätzlich. Diese Absenkung unter dem doppelten Einfluss von Tektonik und Sedimentlast - Geologen sprechen von Subsidenz - kann im Extremfall zwanzig Kilometer betragen, was zu entsprechend mächtigen Ablagerungen führt. Das Pariser Becken ist ein Beispiel. In seinem tiefsten Teil erreicht die Füllung eine Mächtigkeit von 3000 Metern.

Zum Muttergestein für Erdöl werden Sedimente, wenn sie mindestens ein bis zwei Gewichtsprozent organisches Material enthalten: Gewebsreste von Organismen, welche in der Nähe gelebt haben - vorwiegend planktonische Algen, höhere Pflanzen und Bakterien. Solche organikreichen Sedimente sind selten, da sie ein Ökosystem mit extrem hoher biologischer Produktivität erfordern. Außerdem müssen sich die abgestorbenen Lebewesen auf schnellstem Weg an einem Ort ablagern, der frei von Sauerstoff ist. Andernfalls würden aerobe Bakterien und benthische (am Meeresboden lebende) Organismen auf der angesammelten Biomasse üppig gedeihen und sie rasch verzehren. Meist bestehen die Gesteine mit hohem Organikgehalt aus Ton oder Mergel (Gemisch aus Ton und Kalk). Sie sind deshalb feinkörnig und wenig porös, also ziemlich undurchlässig.

Je nach Art des enthaltenen organischen Materials ordnet man die Muttergesteine drei großen Kategorien zu. Der wenig verbreitete Typ I besteht vorwiegend aus Resten von Bakterienmembranen und einzelligen Algen, die in Süßwasserseen leben. Seine Qualität ist sehr gut; denn siebzig bis achtzig Gewichtsprozent der eingebetteten Biomasse können sich unter günstigen Bedingungen in Kohlenwasserstoffe umwandeln. Muttergesteine dieses Typs kommen zum Beispiel in den Sedimenten von Seen am Westrand Afrikas und Ostrand Südamerikas vor. Sie haben sich dort zu Beginn der Kreidezeit vor 140 Millionen Jahren abgelagert. Ferner gibt es sie in weniger als halb so alten Becken in Südostasien oder auf dem chinesischen Festland.

Der häufigere Typ II enthält Reste planktonischer Meeresalgen. Zu ihm gehören die Muttergesteine der Nordsee, Venezuelas und Saudi-Arabiens. Maximal dreißig bis sechzig Gewichtsprozent ihres Organikgehalts wandeln sich unter optimalen Bedingungen in Kohlenwasserstoffe um. Typ III schließlich (aus dem auch die Kohle entsteht) stammt von Überresten einer höher entwickelten Vegetation auf dem Festland - typischerweise in Flussdeltas. Zwar können sich hier nur zehn bis dreißig Gewichtsprozent des Organikgehalts in Kohlenwasserstoffe umwandeln, doch ist die produzierte Erdölmenge erheblich, da sich die betreffenden Sedimentpakete oft mehrere hundert Meter hoch auftürmen.

Die gebildeten Kohlenwasserstoffe erzeugen im Muttergestein einen Überdruck und werden dadurch in weniger kompressible benachbarte Schichten gedrückt. Sind das poröse, durchlässige Gesteine mit Rissen und Verwerfungen, die zu fünf bis dreißig Prozent aus Hohlräumen bestehen, dann eignen sie sich als Speicher- und Drainagekomplex. Die Kohlenwasserstoffe können darin zunächst einmal weiterwandern. Da sie spezifisch leichter sind als das Wasser, von dem die Sedimentgesteine durchdrungen sind, steigen sie unter dem Einfluss von Auftriebskräften mehr oder weniger senkrecht empor, bis sie auf ein unpassierbares Deckgestein - in der Regel aus Ton oder Evaporit (verfestigtem Salz) - stoßen, das sie in der porösen Schicht zurückhält. Fehlt eine solche Sperre, dringen sie schließlich bis zur Oberfläche vor, wo sie durch natürliche chemische oder biologische Prozesse zerstört werden. Auf dieser Weise gelangen schätzungsweise genauso viele Kohlenwasserstoffe in die Umwelt wie durch menschliche Aktivitäten.

Das Deckgestein genügt aber noch nicht; es muss eine Fangstruktur hinzukommen, in der sich die im Drainagesystem migrierenden Kohlenwasserstoffe ansammeln. Es gibt zwei Arten davon. Strukturfallen entstehen auf Grund geometrischer Besonderheiten. So sammelt sich Erdöl unter nach oben gewölbten (antiklinalen) Falten des Deckgesteins oder an Stellen, wo zwei unpassierbare Schichten schräg aufeinander stoßen. Bei stratigrafischen Fallen verringert sich dagegen plötzlich die Porosität des Speicherkomplexes - etwa am Übergang zu einem undurchlässigen Gestein. Die Poren können aber auch durch mineralische Verkittung verstopft sein.

Selbst wenn all diese geologischen Voraussetzungen in einem Sedimentbecken erfüllt sind, müssen geeignete thermische Bedingungen hinzukommen, damit auch wirklich Erdöl entsteht. Das ist der Fall, wenn sich das Sedimentbecken weiter füllt und das Muttergestein fortschreitend verschüttet wird. Dadurch gerät es immer tiefer unter die Oberfläche und erwärmt sich zunehmend, weil die Temperatur um etwa dreißig Grad Celsius pro Tiefenkilometer zunimmt. Die Hitze spaltet (crackt) schließlich das fossilierte organische Material im Inneren des Gesteins, sodass es sich in chemische Verbindungen mit immer geringerem Molekulargewicht umwandelt. Erdöl ist ein Gemisch aus solchen Verbindungen. Es wird zum Erdgas, wenn sich bei weiter steigender Temperatur der Crack-Prozess fortsetzt. Je nachdem, welches Produkt unter den jeweiligen Bedingungen entsteht, spricht man von Öl- oder Gasfenster.

Die Spaltung ist ein „kinetisches“ Phänomen, was bedeutet, dass die Zeit eine wesentliche Rolle spielt: Eine längere Dauer des Crack-Vorgangs kann eine geringere Temperatur kompensieren. So erreichte das tertiäre Muttergestein, in dem sich das kalifornische Erdöl gebildet hat, sein Ölfenster bei 135 Grad Celsius schon nach 20 Millionen Jahren. Dagegen benötigte das Muttergestein des Pariser Beckens 100 Millionen Jahre, bis sich bei hundert Grad sein spezifisches Ölfenster auftat.

[…]

mfg
Christof

[Bei dieser Antwort wurde das Vollzitat nachträglich automatisiert entfernt]