Anova mit messwiederholung

hallo und schon mal vorab danke für die hilfe :smile: ich muss im spss daten auswerten mit einer anova mit messwiederholung. ich habe 20 vpn getestet anhand von 156 stimuli unterschiedlicher art, es gab wörter und nichtwörter und drei modalitäten also ein 2x3 design. die av sin die reaktionszeiten, die ich aufgezeichnet habe. so nun müsse ich eben eine varianzanalyse mit messwiederholung rechnen, da alle vpn die gleichen stimuli bearbeitet haben, komme aber nicht auf die richtige anordnung der daten im spss. in den büchern etc. finde ich diese auswertung immer nur anhand von beispielen mit messwiederholungen im sinne von gruppen. kann mir da jemand weiterhelfen?

Hi,

kannst du das design noch mal etwas genauer beschreiben?
Was ist deine Hypothese?
Welcher Vergleich interssiert dich?
Wie oft wurde wiederholt?
Wurde die Reihenfolge der Modalitäten randomisiert?
Hast du missing values?
Was meinst du mit Wörtern und Nichtwörtern?

btw: Reaktionszeiten fallen eher in die Kategorie time to event analysis.

Grüße,
JPL

Hallo!

hallo und schon mal vorab danke für die hilfe :smile: ich muss im
spss daten auswerten mit einer anova mit messwiederholung. ich
habe 20 vpn getestet anhand von 156 stimuli unterschiedlicher
art, es gab wörter und nichtwörter und drei modalitäten also
ein 2x3 design. die av sin die reaktionszeiten, die ich
aufgezeichnet habe. so nun müsse ich eben eine varianzanalyse
mit messwiederholung rechnen, da alle vpn die gleichen stimuli
bearbeitet haben, komme aber nicht auf die richtige anordnung
der daten im spss.

Also habt ihr 26 Items pro Versuchsbedingung getetstet. Und nun wollt Ihr über die mittleren Gruppenreaktionszeiten eine ANOVA machen.

Die Anordnung ist die, dass pro Bedingung die mittelwerte der Versuchspersonen Spaltenweise abgetragen werden.

Die erste Spalte hat also z.B. „Wörter & Modalität 1“, die zweite „Wörter & Modalität 2“, …, die letzte Spalte „Nichtwörter & Modalität 3“

Die 20 VP’s sind Zeilenweise mit ihren Werten angeordnet.

Die AANOVA wird nun durchgeführt, indem man zuerst die Innersubjektvariablen unter SPSS definiert.

Gehen wir von folgender Anordnung der messwiderholten Variablen aus:

VAR1= Wörter & Modalität 1
VAR2= Wörter & Modalität 2
VAR3= Wörter & Modalität 3
VAR4= Nichtwörter & Modalität 1
VAR5= Nichtwörter & Modalität 2
VAR6= Nichtwörter & Modalität 3

Dann musst Du unter „Analysieren“–>„Allgemeines lineares Modell“–>„Messwiederholung“ zuerst die Innersubjektvariable mit den Ausprägungen Wörter/Nichtwörter mit zwei AUsprägungen definieren.

Danach definierst Du die Modalitäten-Variable mit 3 AUsprägungen.

Dann klickst Du auf „definieren“.

Die Kombinationen sind nun rechts im Fenster angegeben, Du musst nun die Variablen den jeweiligen Kombinationen zuordnen:

(VAR1, 1,1)
(VAR2, 1,2)
(VAR3, 1,3)
(VAR1, 2,1)
(VAR2, 2,2)
(VAR3, 2,3)

Wie Du siehst, kann SPSS jetzt anhand der Zuordnungscodes bei obiger Beispieldarstellung erkennen, welche Faktorstufen jeweils zusammengehören.

Jetzt rechnet er Dir die ANOVA, wobei Du auch für die 3fach abgestufte Variable POST-HOC-Kontraste ausrechnen lassen kannst.

Noch ein Hinweis (gebe ich immer an der Stelle, hagelt sicher wieder Kritik bei anderer Meinung): Vorsicht bei der Interpretation von Haupteffekten, wenn eine Interaktion vorliegen sollte. Hier lohnen sich m.E. nach eine explorative Datenanalysen mittels des paarigen T-Tests.

Lieben Gruß
Patrick

Hallo JPL und danke für Deine Antwort!

Also ich habe 2 lexikalisch Kategorien (Wörter und Nichtwörter (sehen aus wie Wörter, haben aber keine Bedeutung)) und 3 Modalitäten (auditiv, visuell und audiovisuell). Im Total 156 Items, verteilt über die 6 möglichen Kombinationen von Bedingungen. Jede Vp hat alle 156 Items gelöst, die Reihenfolge der Items war pseudorandomisiert und für alle Vpn gleich. Die Missings habe ich bereits „rausgeschmissen“. Mich interssiert, ob W oder NW schneller verarbeitet werden bzw. welche Modalität am schnellsten verarbeitet wird, das habe ich bereits mit einer univariaten ANOVA ausrechnen können. Jetzt interessieren aber noch die Interaktionen zw. W/NW und Modalitäten, dafür muss ich die ANOVA mti Messwiederholung rechnen, habe aber Mühe bei der Anornung der Daten. Für die univariate A. hatte ich pro Vp und pro Item eine Zeile, die Spalten waren W/NW, Modalität, erwartete Antwort, gegebene Antnwort. So konnte ich die falschen Antworten rausfiltern. LG

Hallo Patrick, erstmal vielen lieben Dank für Deine ausfühliche Antwort. Also, so wie Du geschriben hast, habe ich das auch schon mal versucht. Ich habe also in den Spalten die 6 möglichen Kombinationen (W, NW, a, v, av), zusätzlich habe ich noch eine Spalte mit dem Geschlecht der Versuchperson zum schauen ob es Geschlechtereffekte gibt. Den Zeilen habe ich, wie Du auch sagtest, die Vpn, pro Zeile eine und danach die Mittelwerte pro Bedingung. Wenn ich jetzt die Anova mit Messwiederholung rechne und Post-Hoc-Tests haben möchte um zu schauen ob es signifikante Interaktionen zwischen Modalitäten und Wötern gab, habe ich dort unter Post-Hoc keine Faktoren mehr, die ich auswählen kann. Kannst Du mir da weiterhelfen? LG

Hallo!

Das gute alte Post-Hoc-Problem mit Zeitreihen…

Es gibt unter SPSS keine wirklich vernünftigen Lösungen, wenn, dann kannst Du Deine 3fach abgestufte Variable in Post-Hoc-Vergleichen auf den Prüfstand stellen.

Hier findest Du eine Möglichkeit, unter „Optionen“ bei der ANOVA die Faktoren im Feld oben links in das Feld oben rechts zu schicken und ein Häckchen bei „Haupteffekte vergleichen“ zu machen. Dann kannst Du noch eine Methode auswählen, wobei Bonferroni ja weit verbreitet ist. Hier krigst Du dann paarweise Vergleiche der mittleren Differenzen der dreifach abgestuften Variable ausgegeben.

Alternativ kann man immer die Daten mittels T-Test Explorieren.

Hier kann unter der Auswahl der richtigen Kombinationen an Stufen bzw. Gruppen eine Interaktion auch gut dargestellt werden. Natürlich können auch die ANOVA-Haupteffekte so einzeln nachvollzogen werden.

Ein T-Test über den Mittelwert der Bedingungsmittelwerte von W-a, W-v, W-av mit dem Mittelwert der Bedingungsmittelwerte NW-a, NW-v, NW-av entspricht Deinem Haupteffekt W-NW, wobei (t)² = F ist.

Ansonsten gibt es noch hierarchische Analysemöglichkeiten (hierarchisch lineare Modelle), welche jedoch u.U. den Rahmen sprengen würden. Das wäre dann mit der Betreuung einer möglichen Diplomarbeit abzuklären sein.

Lieben Gruß
Patrick

Hi,

[…] die Reihenfolge der Items war pseudorandomisiert und für alle Vpn gleich.

Was dann auch keinen Unterscheid macht. Wenn es für alle die gleiche Reihenfolge ist, mittelt sich ein möglicher Lerneffekt nicht mehr raus.

Die Missings habe ich bereits „rausgeschmissen“.

Und wie kamen die zustande?

Mich interssiert, ob W oder NW schneller verarbeitet werden bzw. :welche Modalität am schnellsten verarbeitet wird, das habe ich :bereits mit einer univariaten ANOVA ausrechnen können.

Wie hast du das angestellt? Mit drei univariaten Analysen?? Da hast du auch schon das Problem der Messwiederholung, weil du von jedem Proband pro Modalität und Kategorie schon 26 Werte hast. Die sind schon nicht unabhängig voneinander, denn wenn ein Prob generell (nicht so) schnell ist, wird er bei allen 26 mehr oder minder (nicht so) schnell sein.

Jetzt interessieren aber noch die Interaktionen zw. W/NW und :Modalitäten, dafür muss ich die ANOVA mti Messwiederholung :rechnen, habe aber Mühe bei der Anornung der Daten.

Erstmal _musst_ du überhaupt gar keine ANOVA rechnen, sondern dir das richtige Modell überlegen. Man soll nicht die Daten an den Test anpassen, sondern den besten Test für seine Daten und die Fragestellung suchen.
Reaktionszeiten sind eher rechtsschief (weil immer eine minimale reaktionszeit gibt) als symmetrisch, was die Normalverteilungsannahme schwer macht.

Für die univariate A. hatte ich pro Vp und pro Item eine Zeile, die :Spalten waren W/NW, Modalität, erwartete Antwort, gegebene :Antnwort. So konnte ich die falschen Antworten rausfiltern.

Die falschen Antworten hast du weggelassen? Das ist ja schon glatte Fälschung. Bei einer time-to-event-analyse könnte man das entsprechend berücksichtigen.

Du hast dir einen recht komplexen Versuchsaufbau „angetan“ - dann nur mit einer ANOVA darüberzubügeln ist da echt Verschwendung.

Grüße,
JPL