Kohlendioxid entsteht bei der Oxidation kohlenstoffhaltiger Substanzen,z. B bei der Verbrennung von Kohle Erdöl und Benzin. Die folgenden Fragen sollen einen Ausblick auf mögliche Entwicklungen und Folgen geben. Bei den verwendeten Funktionen handelt es sich manchmal um grobe Vereinfachungen. es wurde jedoch darauf geachtet, dass sich realistische Daten ergeben.
a) Die Emission E von CO2 (gemessen in Tonnen) nimmt in den letzten Jahrzehnten stetig zu. Trägt man den Logarithmus von E gegen die Zeit t (gemessen in Jahren seit 1980) ab. Ergibt sich eine Gerade siehe Abbildung. (gibt es eine Möglichkeit die Abbildung hier einzuscannen??)
x Achse t ab 1980
y Achse lnE von 1,7 bis 2,2 (Schnittpunkt mit y Achse bei ca. 1,72)
es ist eine lineare Funktion.
- wie lautet die Geradengleichung?
(Ergebnis der Gleichung: lnE= 0,216(t+10)+22,1 - berechnen sie die CO2 Emission über die Jahre 2000 2020 2100?
-wann hat sich die Emission gegenüber 1980 verdoppelt bzw. verdreifacht?
-um wie viel Prozent nimmt die CO2 Emission im laufe eines Jahres zu, hängt das Ergebnis vom Jahr ab?
b) Die Erhöhung des Co2 Anteils in der Atmosphäre führt zu einer Erhöhung der Lufttemperatur. Modellrechnungen sagen für Co2 Konzentrationen über 335 ppm eine Temperaturerhöhung T (in Grad Celsius)in Abhängigkeit von der Co2 Konzentration x (in ppm) voraus, die durch folgende Funktion beschrieben werden:
T(x)=13*(1- e^(-0,0005x+0,1675) mit x E [335;1000]
-Skizzieren Sie den Graphen dieser Funktion und bestimmen Sie seine Asymptote.
-Bei welcher Co2 Konzentration nimmt die Temperaturerhöhung um 0,5 °C pro 100 ppm zu?
c)Die nebenstehende Grafik zeigt die auf dem Schauinsland gemessene Co2 Konzentration der letzten Jahre. Sie zeigt einen linearen Zuwachs gemäß der Gleichung
x(t)= (10/7)t+ 338 (t in Jahren seit 1980)
-Geben Sie mit Hilfe von teil b die Temperaturerhöhung als Funktion der Zeit t an. Berechnen Sie damit die Temperaturerhöhung der Atmosphäre bis zum Jahr 2100.
In welchem Zeitraum erhöht sich die Temperatur nach dieser Prognose um 3 °C?
-Untersuchen Sie den Gültigkeitsbereich des in b angegebenen Modells anhand dieser Funktion.
Also hier kommen meine Fragen:
zu a)
- bei 2000 ist t=20 , 2020 t=40 , 2100 t=120
t werte in Funktion einsetzen, dann hab ich als ergebnis: 2000= 28,58 ; 202=32,9; 2100=50,18
-verdoppelt seit 1980: 1980 hat den t wert 24,26 *2= 48,52
dann setzt ich die 48,52 für lnE ein. Ergebnis: 112,31 also im Jahr 2092
-verdreifacht seit 1980: 72,78 für lnE einsetzen, dann ist t=224,63. Also im Jahr 2204.
-prozentuale Zunahme:
kann ich hier etwas mit der Ableitung anfangen?? die Ableitung ist 0,216 und ist somit die jährliche Zunahme. sie ist also unabhängig vom Jahr?
Zu b)
die Asymptote ist 13, da x geht gegen unendlich, dann ist der Term mit e=0
für die Temperaturerhöhung benötigt man die Ableitung. In die 1. Ableitung 0,5° einsetzen für T(x) dann kommt raus t=6,16
zu c)
hier komm ich überhaupt nicht weiter, hab keinen ansatz. Die Abbildung fehlt leider, ich weiß nicht, ob ihr auch ohne diese Abbildung etwas mit dieser Aufgabe anfangen könnt. Könnte sie sonst auch per mail schicken.
Danke für eure Hilfe ist wirklich sehr wichtig für meine Note!!
Lieber Gruß Lara