Im Gelände sind 3 feste dreieckförmig angeordnete Messpunkte vorhanden. Die Punkte sind durch Rechts- und Hochwerte (x/y-Werte) in ihrer Lage festgelegt. An den Punkten wird z.B. die Geländehöhe in Meter über NN gemessen. Bei unterschiedlichen Höhenmesswerten ergibt sich zwischen den Punkten eine Fläche, die in eine bestimmte Richtung hin geneigt ist. Wie kann man rechnerisch die Neigungsrichtung (Falllinie) ermitteln, ausgedrückt in Grad als Abweichung von der Nordrichtung?
Hi…
Dein Problem bekommt man am leichtesten mit den Mitteln der Vektorrechnung in den Griff. Nennen wir die drei Punkte A,B,C. Sie haben jeweils 3 Koordinaten, zB A = (xa,ya,za). Es sei z die Höhe, Norden liege in positiver Y-Richtung. Zumindest x- und y-Wert müssen im selben Maßstab vorliegen.
Nun wählen wir einen der Punkte aus, sagenwirmal A, und subtrahieren seinen Ortsvektor (die Koordinaten) von denen der anderen zwei Punkte und erhalten so die Richtungsvektoren AB und AC.
Das Kreuzprodukt (http://de.wikipedia.org/wiki/Kreuzpro…) dieser Richtungsvektoren ist wiederum ein Vektor, der senkrecht auf der aufgespannten Ebene steht. Wenn dessen z-Wert positiv ist, lässt man ihn einfach weg und betrachtet nur noch x und y. Bei negativem z muß man erst noch die Vorzeichen von x und y umkehren.
Der zweidimensionale Vektor (x,y) zeigt dann in Fallrichtung. Den Winkel zur y-Achse zu bestimmen überlasse ich Dir erstmal.
genumi