Gleichung lösen

Ich habe ein Problem mit einer Gleichung die ich nicht lösen kann:

\sum_{k=1}^{n}\binom{n}{k}* 0.2^k*0.8^{n-k}= 0.99

gesucht ist n

Ich habe bereits versucht diese Gleichung mit einem CAS Rechner zu lösen, jedoch besitzt dieser nicht genügend Rechenleistung. Könnte jemand diese Gleichung bitte lösen und mir sagen, wie ich diese Gleichung mit Excel lösen kann?

Gruß Björn

Tipp: Binomischer Satz

mfg,
Ché Netzer

Damit komme ich nicht wirklich weiter, ich kann die Gleichung zwar umformen, aber eine Lösung erhalte ich dadurch nicht.

Björn

\sum_{k=1}^{n}\binom{n}{k}* 0.2^k*0.8^{n-k} = \sum_{k=0}^{n}\binom{n}{k}* 0.2^k*0.8^{n-k} - 0,8^n = (0,2+0,8)^n - 0,8^n = 1 - 0,8^n = 0,99
Den Rest muss ich nicht vorrechnen, oder?

mfg,
Ché Netzer

1 Like