Hilfe zur 3. Dimension

Ich möchte von irgend jemanden erfaren was 3 Dimensional bedeutet. Die ganze Welt spricht von 3d-Grafik und 3d Darstellung. Jedoch konnte mir bis heute keiner erklären, veranschaulichen oder definieren was überhaupt eine Dimension ist. Wer kann mir dazu Hilfe oder einen Ansatzpunkt geben ?

gruss
Pascal
Gesamtschule Rastbachtal
Klasse 8f

Also die WElt in der Du DIch bewegst ist 3Dimensional.

Folgendes zur Erläuterung:

Ein Punkt ist nulldimensional, er hat keinerlei Ausdehnung.

Eine Linie (ein Strich) ist eindimensional, er hat nur eine Länge

Eine Fläche (z.B. ein Quadrat) ist zweidimensional, es hat eine Länge und eine Breite.

Ein Körper (z.B. ein Würfel) ist dreidimensional, er hat eine Länge eine Breite und eine Höhe.

Was hat es jetzt mit 3D-Grafiken auf sich?
Da möchte ich erst mal einen SChritt zurück gehen und eine 2D-Grafik betrachten. Vielleicht kennst Du eine Bauzeichnung oder einen Stadtplan. Das sind zweidimensionale Abbildungen, die nur eine Breite und eine Länge angeben.
Wenn Du aber ein räumliches Objekt (z.B. ein Haus) so darstellen möchtest, das auch die dritte Dimension miterfasst wird, mußt du es als 3D-Grafik darstellen. Das wird ja auch bei allen besseren Computerspielen so gemacht.
Hoffentlich ist die Erklärung nicht verwirrender, als Du schon bist :wink:

Gandalf

[Bei dieser Antwort wurde das Vollzitat nachträglich automatisiert entfernt]

… noch ein Versuch:
stell Dir ein Schattenspiel vor… die Figuren bewegen sich in 2 Dimensionen… aber „Vorne“ oder „hinten“ gibt es nicht. Das wäre die 3. Dimension.

Oder stell Dir ein Luftbild vor… einem Luftbild von den Alpen kannst Du nicht ansehen, wie hoch die Berge sind… die 3. Dimension (in diesem Fall die Höhe) fehlt.

Bei den Computerspielen ist es ähnlich… die alten 2-dimensionalen werden von „echten“ 3 dimensionalen abgelöst… es sieht also aus, wie im wirklichen Leben… vorne - hinten
rechts - links
oben - unten

verstanden??? *vorsichtigfrag*
Ayla…

Ich möchte von irgend jemanden erfaren
was 3 Dimensional bedeutet.

Am besten ist der Begriff der linearen
Unabhaengigkeit, um das zu erklaeren. Das
ist schon gehobenere Mathematik, ich veruche
es mal trotzdem mit einfachen Worten:

Ein Punkt: Er hat keinerlei Ausdehnung,
er hat keine Dimension (im Sinne von einer
Laenge), denn seine Laenge, Breite oder
Hoehe ist Null.

Eine Geraden: Sie besitzt eine Ausdehnung in
eine ganz bestimmte Richtung. Eine Laenge
auf dieser Geraden kann ich bestimmen, indem
ich mir einen Stock nehme, dessen Laenge
ich kenne, und den ich zum Vergleichen
nehme (nichts anderes tut man, wenn man eine
Laenge mit einem Zollstock misst). Dieser
eine Zollstock reicht aus, um jede beliebige
Strecke auf einer Geraden zu messen.

Eine Flaeche: Sie hat eine Laenge und eine
Breite. Mit einem einzigen Zollstock kann
ich nach wie vor nur die Laenge einer
Strecke auf einer Geraden messen. Nehmen wir
mal weiterhin an, man koenne den Zollstock
nur auf einer Geraden bewegen, dann ist es
unmoeglich, die Lage von Punkten der Flaeche
ausserhalb der einen Geraden (auf der der
Zollstock sich bewegen kann) zu bestimmen.
Ich brauche wenigstens einen zweiten
Zollstock auf einer zweiten Geraden, DIE ZUR
ERSTEN NICHT PARALLEL IST. Nun kann ich die
Lage jedes Punktes der Ebene wie folgt
bestimmen: Man faelle die Lote von dem Punkt
auf die beiden Geraden, und dann messe man
die Strecken auf den beiden Geraden vom
gemeinsamen Schnittpunkt aus bis zu den
Loten mit den beiden Zollstoecken (zur
Erinnerung: die man nur entlang der Geraden
bewegen kann). Rein theoretisch koennte man
noch eine dritte Geraden auf die Flaeche
zeichen, die nicht parallel zu den anderen
beiden ist. ABER: die Lage jedes Punktes auf
dieser dritten Geraden kann mit Hilfe von
Streckenmessungen auf den anderen beiden
bestimmt werden. Diese dritte Geraden, so
sagt der Mathematiker ist nicht mehr linear
unabhaengig von den ersten beiden.
Die Anzahl lineaer unabhaengiger Geraden
(mathematisch korrekter waeren an der Stelle
von Geraden Vektoren) ist 2, was
gleichbedeutend ist mit einer
2-dimensionalen Menge = Flaeche.

Ein Raum: Den gleichen Gedanken wie bei der
Flaeche fortsetzen: Es gibt eine dritte
Geraden, die nicht parallel zu den anderen
beiden (die in einer Flaeche liegen) ist, aber auch nicht durch die anderen beiden
beschrieben werden kann.

Aehnlicher Ansatz, vielleicht doch etwas
einfacher vorstellbar: Die Dimension eines
Raumes (Raum im weiten Sinne) ist die
maximale Anzahl von Geraden, die
vollstaendig in diesem Raum liegen und
senkrecht aufeinander stehen. Ist der Raum
eine Geraden, so gibt es nur die eine.
Auf eine Blatt Papier kannst Du immer 2
Geraden zeichnen, die senkrecht aufeinander
stehen (Blatt=Flaeche=2-dimensional). In
einen echten Raum, in welchen wir leben,
kann mann immer drei Geraden so hineinlegen,
dass sie senkrecht aufeinander stehen.

MEB

noch eine Erklärung

Ich möchte von irgend jemanden erfaren
was 3 Dimensional bedeutet. Die ganze
Welt spricht von 3d-Grafik und 3d
Darstellung. Jedoch konnte mir bis heute
keiner erklären, veranschaulichen oder
definieren was überhaupt eine Dimension
ist. Wer kann mir dazu Hilfe oder einen
Ansatzpunkt geben ?

Ich versuch es mal etwas mehr auf die Mathematik bezogen.
Alsoo

Das x/y-Koordinatensystem kennst du ja sicherlich. Damit ist es möglich 2 Dimensionen zu erfassen. Wenn du das Koordinatesystem vor dir liegen hast und einen Körper reinlegst, dann kannst du für alle Eckpunkte die X und die Y-Koordinate bestimmen. Also zwei Dimensionen.
Was fehlt ist die dritte Dimension. Das wäre die Höhe der Eckpunkte über der Papierfläche. Im Koordinatensystem wäre das die Z-Achse.

3D-im Computer heisst, das z.B. bei Zeichenprogrammen für alle Punkte (Endpunkte von Linien) jeweils 3 Koordinaten abgespeichert werden (XYZ). Der Computer ist dann in der Lage den Gegenstand aus jedem Blickwinkel darzustellen.
Du kannst ihn mit der Maus drehen und von allen Seiten betrachten.

Bei 2D-Darstellungen gibt es nur die Draufsicht. Das Bild ist platt.

Ich hoffe es hilft
Dennis

Hallo Gandalf :smile:

Also die WElt in der Du DIch bewegst ist
3Dimensional.

Wenn er sich in der selben Welt bewegt, wie der Rest aller Menschen, ist seine Welt 4-dimensional !!!

Stell dir vor, du verabredest dich mit jemandem zum Essen. Dann vereinbart ihr nicht nur den Ort (etwa: Egalweg 88, 12345 Irgendwo, 2. Etage), sondern ihr müsst auch eine Uhrzeit ausmachen, damit ihr euch nicht verpasst. Du siehst, dass unsere Welt tatsächlich aus 4 Dimensionen besteht: Länge, Breite, Höhe, Zeit.

cu Stefan.

Hi Pascal :smile:

Eine Dimension ist nichts anderes als eine Bewegungsmöglichkeit.

1 Dimension = nur geradeaus

Wenn du z.B immer geradeaus gehst, bewegst du dich auf einer geraden Linie. Eine gerade Linie ist also ein 1-dimensionales Objekt. Ein 1-dimensionales Objekt hat eine Länge!

2 Dimensionen = geradeaus und drehen

Wenn du geradeaus gehen kannst und dich drehen kannst, dann bewegst du dich auf einer Fläche. Du kennst das bestimmt vom Fußballplatz.

2 Dimensionen = geradeaus und seitwärts

Du kannst dich auch auf einer Fläche (Fußballplatz) bewegen, wenn du nur geradeaus und seitwärts gehst. Das sieht zwar doof aus, aber du kannst jeden Punkt auf dem Fußballplatz erreichen.

Mit anderen Worten, um dich auf einer Fläche zu bewegen, brauchst du mindestens 2 verschiedene Bewegungsmöglichkeiten. Eine Fläche ist 2-dimensional. Ein 2-dimensionales Objekt hat eine Länge und eine Breite!

3 Dimensionen = geradeaus, seitwärts, hoch

Stell dir vor, es gäbe keine Treppen und keine Aufzüge, und du würdest irgendwo im 10. Stock wohnen. Dann hättest du keine Möglichkeit, von unten in deine Wohnung zu kommen. Es reicht nicht, wenn du wie auf dem Fußballplatz in 2 Dimensionen rumläufst. Irgendwie musst du nach oben. Du brauchst also noch eine weitere Bewegungsmöglichkeit. Ein Haus ist also z.B. ein 3-dimensionales Objekt. Ein 3-dimensionales Objekt hat eine Länge, eine Breite und eine Höhe!

Ich hoffe, das war nicht zu kompliziert erklärt …

Viele Grüße

Stefan.