Hi,
der Oberbegriff ist in einer jeden Definition notwendig enthalten. Es gibt aber zu jedem Begriff Hierarchien von Oberbegriffen. Für die Definition sollte man den nächsthöheren Oberbegriff nehmen (= genus proximum): „Ein Tisch ist ein Möbelstück, das … (im Unterschied zu …) …“. Dieser Unterschied macht seine Differenz zu Gegenständen auf der gleichen Stufe aus, also zu anderen seiner Art (= Spezies). Daher nennt man das die differentia specifica. Zu „Tisch“ hättest du als Oberbegriff (Gattung) „Möbelstück“, als „benachbarte“ Spezies z.B. „Stuhl“.
Da „integrieren“ aber mehrere Konnotationen (ungefähr = Bedeutungsfelder) hat, gibt es, wie schon gesagt wurde, mehrere Oberbegriffe - oder, was auf dasselbe hinausläuft: mehrere Definitionen.
Zu „integrieren“ hättest du - aber nur als Beispiel - die Oberbegriffshierarchie:
abstrakter Begriff
mathematischer Begriff
mathematische Operation (Algorithmus angewendet auf ein math. Objekt wie z.B. Funktionen, Zahlen, Mengen usw usw)
und endlich:
integrieren, und zwar neben differnezieren als Artbegriff auf gleicher Abstraktionsebene usw. usw.
Der nächstliegende Oberbegriff der mathematischen Art wäre also:
„mathematische Operation“. Die genannten „Differentialrechnung“, „Flächenberechnung“ wären falsch, das sind keine Oberbegriffe zu „integrieren“.
Wenn aber „integrieren“ zum Wortfeld „verschmelzen“ gehört, so, daß z.B. „trennen“, „ausschließen“, „berühren“, „verbinden“ usw. hier andere Artbegriffe auf gleicher Stufe wären, dann wäre ein anderer Oberbegriff (oder Gattungsbegriff) zu suchen, etwa „Distanzbestimmungen“ oder ähnliches …
Was du zu suchen scheinst, wäre ein Oberbegriff zu beiden Oberbegriffen. Da beide nicht das geringste miteinander zu tun haben, sehe ich keine andere Möglichkeit als „Tätigkeit“, oder „Prozess“ oder sowas in der Art.
Gruß
Metapher