Integral und Differentialrechnung

Hallo liebe Forumnutzer!

Ich hätte da eine Frage bezüglich Auf- und Ableitungen von Sinusfunktionen.

Hier ein Beispiel:

U(t)= 10V * sin(2*pi/20ms*t)+2V

Ich benötige die Auf- und die Ableitung.
Wenn es möglich ist, eine Schritt für Schritt Erklärung, denn ich bin leider nicht besonders gut in Mathematik! :frowning:

Danke für eure Mühen im voraus!

Hallo Bernd,

Ich hätte da eine Frage bezüglich Auf- und Ableitungen von
Sinusfunktionen.

was ist eine Aufleitung?
Integration?

Gandalf

hi,

Ich hätte da eine Frage bezüglich Auf- und Ableitungen von
Sinusfunktionen.

Hier ein Beispiel:

U(t)= 10V * sin(2*pi/20ms*t)+2V

du hast im prinzip f(t) = sin(k*t) … im obigen fall mit k=2*pi/20ms
dann ist y’ = cos(k*t) * k = k * cos(k*t)
y" = - k^2 sin(k*t)
usw.

aufleitung kenn ich nicht.

integral wäre:
Y(t) = -cos(k*t) / k

hth
m.

Tritratrulala.

was ist eine Aufleitung?
Integration?

Sogar ein recht gängiger Slangbegriff dafür.

MfG

H wie Hola.

Ich hätte da eine Frage bezüglich Auf- und Ableitungen von
Sinusfunktionen.

Hier ein Beispiel:

U(t)= 10V * sin(2*pi/20ms*t)+2V

Ich benötige die Auf- und die Ableitung.

Vorbemerkung: Ableiten (Differenzieren) heißt, sich rechtsherum auf dem Einheitskreis drehen. Aufleiten (Integrieren) heißt, sich linksherum auf dem Einheitskreis zu drehen.

Eine Sinusfunktion mit Offset ist gegeben.

Nach obiger Eselbrücke landet man bei der Ableitung des Sinus beim Cosinus. Für das Integral landet man beim minus Cosinus.

Die 10 V gehen als konstanter Faktor unverändert mit.
Die verkappte Kreisfrequenz 2pi/20ms muß ebenfalls berücksichtigt werden; es handelt sich nicht um ein blankes „t“, sonder ein „wt“ mit
w = 2pi/20ms. Deshalb taucht dieser Faktor durch die innere Ableitung mit auf:

U(t)= 10V * sin(2*pi/20ms * t) + 2V

(äußere Ableitung mal innere Ableitung gibt:smile:

U’(t) = 10V * cos(2pi/20ms * t) * 2pi/20ms

Die 2V fallen heraus (Konstante).

Ein bißchen zusammenfassen:

U’(t) = 10V * 2pi/20ms * cos(2pi/20ms * t)
U’(t) = (1V/1ms) * pi * cos(2pi/20ms * t)

Falls Dich die 20ms gestört haben, hättest Du sie auch in 50 Hz oder gleich alles in 314 1/s umrechnen können. Je nachdem, was Du damit tun willst.

Beim Integral ist zu beachten, daß hinten an Deiner Funktion noch die 2V baumeln.

Man landet für die Stammfunktion F bei:

F[U(t)] = - 10V * cos(2pi/20ms * t) / (2pi/20ms) + 2V * t

(beim Integral wird durch die innere Ableitung dividiert, daher die Division durch den Faktor vor dem t)

Jetzt kannst Du diesen Term auch noch etwas zerbasteln, …

2V * t - 10V * cos(2pi/20ms * t) / (2pi/20ms)

usw.

MfG

N Abend,

was ist eine Aufleitung?
Integration?

Sogar ein recht gängiger Slangbegriff dafür.

ich glaube das wird in einigen Bundesländern oder vielleicht Regionen sogar in der Schule so gesagt. Klingt aber furchtbar.

Olaf