16^(x-2) - 18 * 4^(x-2) + 32 = 0
wie löst man die aufgabe mit substitution?
Danke
16^(x-2) - 18 * 4^(x-2) + 32 = 0
wie löst man die aufgabe mit substitution?
Danke
Hallo,
ich sage nur Binom und 16=4².
Ziel ist es aber eigentlich, daß du das Zweite selbst siehst.
Alternativ könnte man auch zuerst ein paar mal die 2 (32=2^5) rauskürzen.
Cu Rene
ist substitution nicht so etwas wie x²=z ?
hi,
ist substitution nicht so etwas wie x²=z ?
lieber king pi,
substitution ist das ersetzen von etwas durch etwas anderes, mit dem ziel, dass die zwischenschritte dadurch leichter werden.
in deinem fall:
16^(x-2) - 18 * 4^(x-2) + 32 = 0
könnte man das 16^(x-2) und das 4^(x-2) als irgendwie verwandt entdecken und deshalb
x-2 = z substituieren.
dann:
16^z - 18 * 4^z + 32 = (4^2)^z - 18 * 4^z + 32 = 0
bzw.
(4^2z) - 18 * 4^z + 32 = 0
bzw.
(4^z)^2 - 18 * 4^z + 32 = 0
nochmalige substitution 4^z = u liefert dann:
u^2 - 18u + 32 = 0
…
u1 = 16
u2 = 2
also (resubstitution 1: 4^z = u):
4^z1 = 16 ==> z1 = 2
4^z2 = 2 ==> z2 = 0,5
also (resub. 2: x-2 = z):
x1 = …
x2 = …
dann am besten probe machen. (geht sogar mit dem taschenrechner.)
m.
also (resubstitution 1: 4^z = u):
4^z1 = 16 ==> z1 = 2
4^z2 = 2 ==> z2 = 0,5
16 und 2 bekomme ich auch raus, aber wie funktioniert die resubstitution hier genau? und woher weiße ich ob z1 oder z2 welcher von den beiden potenzen ist?
also (resub. 2: x-2 = z):
x1 = …
x2 = …
und was machst du hier?
also (resubstitution 1: 4^z = u):
4^z1 = 16 ==> z1 = 2
4^z2 = 2 ==> z2 = 0,516 und 2 bekomme ich auch raus, aber wie funktioniert die
resubstitution hier genau? und woher weiße ich ob z1 oder z2
welcher von den beiden potenzen ist?
das ist völlig egal. du kannst die lösungen nummerieren wie du willst.
also (resub. 2: x-2 = z):
x1 = …
x2 = …und was machst du hier?
ich? gar nix. ich lass dich hier die 2. resubstitution selber machen.
du hast jetzt 2 z: z1 und z2
x - 2 = z
also
x = z + 2
also …
m.