Hallo liebe Experten,
Ich habe bei folgender Aufgabe Verständnisprobleme:
Eine Radfeder werde durch die Masse des Autos (1200 kg) um 5 cm verformt. Nun werde ein Stoßdämpfer (im Rahmen eines einfachen Funktionstests) um weitere 5 cm verformt und anschließend, zum Zeitpunkt t=0, losgelassen. Die sich dadurch angeregte „Schwingung“ soll dem aperiodischen Grenzfall entsprechen.
Gesucht ist die Weg-Zeit-Funktion der Bewegung.
Mein bisheriger Lösungsweg:
Die Masse, die auf eine Feder drückt, beträgt 300 kg. Die Federkonstante errechnet sich durch Umstellen der Gleichung m∙g=y∙c nach c. Ich habe hierbei als Masse 300 kg eingesetzt, bin mir aber nicht sicher, ob es stimmt.
Federkonstante c=58860kg/s².
In die Berechnung der Reibungskonstante geht die Bedingung ω=δfür den aperiodischen Grenzfall ein. Mit 2δ=d/m und ω²= c/m erhält man für d=2√(c∙m). Hierbei habe ich die Masse eines Rades (20 kg) verwendet, auch hier weiß ich nicht genau, ob das stimmt.
Reibungskonstante ist dann d=2170kg/s
Um die Weg-Zeitfunktion y(t)=A(δt+ 1)e^(-δt) [in dieser Darstellung sind die gegebenen Anfangsbedingungen berücksichtigt] aufzustellen wird die Abklingkonstante δ benötigt, die sich aus 2δ=d/m errechnet: δ=d/2m.
Abklingkonstante δ=54,25
Die Weg-Zeit-Funktion lautet somit, wenn alle Werte eingesetzt werden: y(t)=e^(-δt)=5(54,25t+1)e^(-54,25t)
Wie schon beschrieben, bin ich mir v.a. bei den Zahlenwerten für die Masse nicht sicher. Weiß jemand von euch Bescheid?
Schon mal Danke für jede Art von Hilfe.
Viele Grüße
Polly