SPSS - Mixed Model

Hey

ich hab hier eine Syntax, mit der ich ein Mixed Model rechne. Die Syntax hat mir jemand gemacht, deswegen weiss ich leider nicht genau, was das eigentlich alles bedeutet. Kann mir das vielleicht jemand erklären?

Syntax:
MIXED AV WITH UV
/FIXED=UV | SSTYPE(3)
/METHOD=REML
/PRINT=SOLUTION
/RANDOM=INTERCEPT /*UV */| SUBJECT(VP) COVTYPE(un).

Erklärungen:
AV = Abhängige Variable
UV = Unabhängige Variable
VP = Versuchspersonen

Danke für jede Hilfe!
LG

Hi,

MIXED AV WITH UV
/FIXED=UV | SSTYPE(3)

Die UV ist eine fixe Variable (d.h., alle haben denselben slope und dieselbe intercept) und für die Schätzung der Effekte wird keine Hirarchie der UV oder deren Interaktionen gemacht.

/METHOD=REML

Die Varianzschätzung beruht auf der restricted maximum likelihood methode, was (im Gegensatz zur ML-Methode) die Varianzen nicht negativ sein dürfen.

/PRINT=SOLUTION

die Lösungen der Matriztengleichungen werden ausgegeben, d.h. es wird der größtmögliche output generiert.

/RANDOM=INTERCEPT /*UV */| SUBJECT(VP) COVTYPE(un).

die intercept wird für jede VP gesondert gerechnet [SUBJECT(VP)], gleichzeitg wird zugelassen, dass die Werte von einer VP alle untereinander korrelieren (Covtype=UN = unstructured) - hast du Mehrfachmessungen?
/*UV*/ bedeutet nur, dass die UV auskommentiert wurde, d.h. das kannst du auch löschen. due UV hier aufzuführen würde auch keinen Sinn ergeben, denn dann würde man die Varianz von der UV verwenden, um die Var von der UV zu erklären …
HTH,
JPL

hey

vielen dank!
ja ich hab mehrfachmessungen.

hat vielleicht noch jemand tips zu

  • voraussetzungen die geprüft werden müssen (ich schau bis jetzt nur ob der AIC und BIC im vergleich zum Unconditional Growth Model geringer sind und ob das -2Restricted Log Likelihood signifikant kleiner wird).
  • wie man das ganze interpretiert (ich schau bis jetzt nur, ob es signifikant ist und dann denk ich, dass dies heisst, dass die UV die AV bei jeder Messung signifikant beeinflusst)

LG und danke nochmal!

Bei „Estmates of fixed Effects“ hab ich bspw. bei der UV einen „Estimate“ von 2,3.

Heisst das jetzt, dass der Einfluss der UV auf die AV den Faktor 2,3 hat? Dann wäre der Faktor 0,5 also quasi negativ, da die AV mit 0,5 mal genommen ja kleiner wird? Bzw. was heisst es wenn das Estimate negativ ist? Je größer die UV desto kleiner die AV?

LG

Hi,

hat vielleicht noch jemand tips zu

  • voraussetzungen die geprüft werden müssen (ich schau bis
    jetzt nur ob der AIC und BIC im vergleich zum Unconditional
    Growth Model geringer sind und ob das -2Restricted Log
    Likelihood signifikant kleiner wird).

Das betrifft den Modelfit, nicht aber die Voraussetzungen. Diese beziehen sich auf die Residuen, welche über die Gruppen hinweg einer Normalverteilung mit Erwartungswert 0 und gleicher Varianz entsprechen müssen.
Prüfen kann man das mit einem Levene-Test und einem QQ-Plot.
bei wiederholten Messungen kann man sich ausserdem Gedanken über die Struktur der Abhängigkeiten machen - bisher hast du UN verwendent, es kann aber z.B. bei zeitlichen Abfolgen inhaltlich sinnvoller sein eine Restriktion vorzugeben; dann würde man z.B. AR (auto regressive) verwenden.

  • wie man das ganze interpretiert (ich schau bis jetzt nur,
    ob es signifikant ist und dann denk ich, dass dies heisst,
    dass die UV die AV bei jeder Messung signifikant beeinflusst)

Das kommt auf den output an, auf den du dich beziehst.
Zuerst wird immer der Faktor (UV) aufgelistet und „berechnet“ ob er einen signifikanten Einfluss auf AV hat.
Unter den solutions kommen dann die Schätzer für das Modell, die sich sinngemäß (!) wie bei einer Regression zusammensetzen:
AV = intercept + UV*Estimate
Allerdings kommt es sehr darauf an, wie die Variablen kodiert werden: effect koding, dummy coding,…? Ich weiß nicht, wie SPSS das macht. Da die UV ausserdem mehr als eine Ausprägung hat, wird das estimate immer als Referenz für eine Gruppe hergenommen. D.h. dass die Intercept das estimate für UV(gruppe=0) ist und das estimate für UV(gruppe=1) gilt. entsprechend bekommst du bei k Ausprägungen von UV (k-1) estimates angezeigt.

HTH,
JPL