Stetigkeitsbedingung an Grenzfläche mit u_r, e_r

Hallo,
gegeben sei ein Material, dass ein e_r (relative Dielektrizitätskonstante) >1 hat und ein u_r =1.

Es fällt im ersten Fall ein Lichtstrahl aus dem Vakuum ein, der nur zur Einfallsebene parallel polarisiertes Licht enthält.
Aufgrund der Stetigkeitsbedingung für E-Felder an Grenzflächen wird der zur Grenzfläche senkrechte Teil um 1/e_r verkürzt, so dass die Welle im Medium mit einem Knick weiterläuft.

Sei nun im zweiten Fall das Licht nur senkrecht zur Einfallsebene polarisiert. Nun gibt es keinen Anteil, der senkrecht zur Grenzfläche steht, sondern nur parallel, das heißt, das E-Feld ist im Medium unverändert.
Da ja u_r=1 ist bleibt das B-Feld, welches ja jetzt dafür eine parallele Komponente, welche durch die Stetigkeitsbedingung so verändert werden könnte, dass es wieder einen Knick gibt.

Hat man in diesem Fall ein Doppelbrechendes Material?
Ist nur das Material nicht doppelbrechend, bei dem e_r=u_r gilt?

Falls ja, wie geht das mit dem Modell einher, dass alles doppelbrechend ist, wo die Atombindungen nicht symmetrisch sind?
Wie wird das u_r also von der Atombindung beeinflusst, sodass unterschiedliche Atombindungen an einem Atom dann auch zu unterschiedlichen u_r führen bzw. e_r=u_r?

Vielen Dank
Tim

Hallo,

denke das so:

Schreibe einen Lichtvektor hin (E_x,B_y,ct) mit Ausbreitungsrichtung nach auf die Grenzschicht zu.

Wenn die Grenzschickt nicht senkrecht auf der Bewegungsrichtung des Lichts liegt, so ist natürlich beim Lösen der Gleichungen zu berücksichtigen, welche Komponente die Schicht in ihrem eigenem Koordinatensystem sieht.

Da E und B Feld senkrecht zueinander stehen, lässt sich sogar immer ein orthogonales Koordinatensystem finden, indem du die Bedingungsgleichungen komponentenweise erfüllen kannst.

Die genauen Betrachtungen hierzu findest du hier:

http://de.wikipedia.org/wiki/Fresnelsche_Formeln

Du siehst also, dass die magnetische und die elektrische Komponente gebrochen werden.

Muss das Verhältnis der gebrochenen Welle erhalten bleiben, sprich: Stehen Elektrische und Magnetische Komponente im selben Krümmungsverhältnis?

Das erscheint mir nicht notwendig. Angenommen, wir haben eine Beschreibung, dass die elektrische Brechung in die magnetische überführt wird.
Diese Gleichung müsste Phasenübersprünge behandeln, also den Wechsel von Energieniveaus in einem elektromagnetisch angeregten Zustand, da der Brechungsindex doch recht empfindlich von den molekularen Eigenschaften des wechselwirkenden Materials abhängt.
Das Brechungsgesetz gilt ja für linear isotrope Medien. In nicht linearen, nicht isotropen Medien würde ich einen linearen Zusammenhang zwischen elektrischer und magnetischer Feldkonstante nur schwerlich vorstellen können.

Wenn du dahingehend Interesse hast, solltest du dir vielleicht mal Festkörperphysik irgendwo ansehen,
http://de.wikipedia.org/wiki/Kristallstruktur

Vielleicht helfen dir die Links ja etwas weiter.

Clydefrog

Diese Formeln geben dir genau aus, was mit deiner Welle geschieht.