Thema Schräglage

Hallo erstma…

Kurze Frage:

Um wieviel erhöht sich meine Kurvengeschwindigkeit wenn ich meine Schräglage um 1 Grad vergrößere?

Ist der Anstieg linear?

Bin mal gespannt ob das jemand weisssss und ob die Fragestellung überhaupt richtig war…

Gruß Jörg

Hoi Jörg!

Also ich kenne Leute, die fahren ohne nennenswerte Schräglage schnell,
andere legen sich halb auf den Asphalt, ohne dass sich dabei die Geschwindigkeit erhöht.
Irgendwann ändert sich einfach die Richtung, wenn sich die Schräglage schlagartig den 90 Grad nähert…
aber die Geschwindigkeit bleibt gleich :smile:

Es gibt da zu viele Parameter, die den gesamt-Schwerpunkt des Systems beeinflussen… nur in Schräglage am Rad gedacht ist einfach zu wenig!

Lieben Gruss
Ulli, die auch die 90 Grad kennt!

Hallo erstma…

Kurze Frage:

Um wieviel erhöht sich meine Kurvengeschwindigkeit wenn ich
meine Schräglage um 1 Grad vergrößere?

Ist der Anstieg linear?

Hallo
Ich glaub, du meinst das so:
Du sitzt immer gerade auf dem Motorrad und fährst heute etwas schneller in einer Kurve und zwar mit 1° mehr Schräglage.

Jetzt möchtest Du wissen, wieviel schneller das ist…

Eigentlich eine Frage fürs Mathematikbrett.
Es kommt u.A. darauf an, welchen Radius Du fährst.
Der Anstieg ist nichtlinear.
Zu mehr hab ich keine Lust.
MfG
Matthias

Ich merke schon das die Frage gut war.

Die Frage war nicht wie komme ich am schnellsten um die Ecke sondern um wieviel, bei gleichen Bedingungen, gleicher Kurve, gleichem Fahrer, die Kurvengeschwindigkeit bei 1° Schräglage mehr, ansteigt…

Muß doch hinter zu kommen sein…

Gruß Jörg

Hallo erstma…

Hallo,
werde ich noch mal nachstellen müssen. Bei der letzten Schräglage war eine Fotografenkopf im Weg der die berechnungen zunichte machte.*grins
Gruß Anno

Kurze Frage:

Um wieviel erhöht sich meine Kurvengeschwindigkeit wenn ich
meine Schräglage um 1 Grad vergrößere?

Ist der Anstieg linear?

Bin mal gespannt ob das jemand weisssss und ob die
Fragestellung überhaupt richtig war…

Gruß Jörg

Hallo,

… eine 90°-Schräglage nicht bereits „Querlage“?

:wink:

Hallo und Tschüß,

Jochen

… eine 90°-Schräglage nicht bereits „Querlage“?

Definitiv nicht. Querlagen gibts bei einer Geburt, wenn man Pech hat.
90° Schräglage - da wird nichts geboren, ganz im Gegenteil:wink:

Grüße Dusan

… eine 90°-Schräglage nicht bereits „Querlage“?

Definitiv nicht. Querlagen gibts bei einer Geburt, wenn man
Pech hat.
90° Schräglage - da wird nichts geboren, ganz im Gegenteil:wink:

Na und wie der (die) sich in die Böschung bo(h)rt…

Gruß
Bernd
*immer schön das Schwarze unten halten*

Moin!

Um wieviel erhöht sich meine Kurvengeschwindigkeit wenn ich
meine Schräglage um 1 Grad vergrößere?

Zunächst mal müßten ein paar Vereinfachungen eingeführt werden. Beispielsweise hat ja ein Reifen eine Kontur. Da wir von Schräglage sprechen, wird der Reifenaufstandspunkt nicht auf der Hochachse des Motorrades liegen - die soll sich aber vermutlich um 1° neigen.

Dann müssen wir natürlich einen stabilen Fahrzustand betrachten.

Für die Veränderung der Schräglage in Abhängigkeit von der Geschwindigkeit ist auch die Höhe des Schwerpunktes auf der Hochachse entscheidend.

Wenn Du einige Vereinfachungen festlegst und einige Randbedingungen definierst, könnte man sich mal an einer Rechnung versuchen.

Von wesentlich größerer Bedeutung für die Praxis ist, welche Kräfte in welcher Schräglage übertragen werden können. Google mal nach „Kammscher Kreis“, vielleicht hilft Dir das ja weiter. Kurze Beschreibung: http://de.wikipedia.org/wiki/Kammscher_Kreis

Munter bleiben… TRICHTEX

Moin moin

Der Kammsche Kreis ist mir ein Begriff. Darin wird nur auf das Gleichgewicht der Kräfte eingegangen.

Die Frage nach der Schräglagengeschwindigkeit ist entstanden weil…

Ein direkter Rennreifen in 180er Größe ermöglicht eine Schräglage von 51°. Ein Michelin Sportreifen in der gleichen Größe bringt es auf 48°.

Gehen wir mal davon aus, dass

Der Raddurchmesser 17" beträgt

die Reifenbreite 180mm beträgt

das Fahrzeug nicht stärker einfedert,

der Reifenschlupf ohne Bedeutung bleibt

und die Schräglage sich von 30° auf 31° ändert.

Die Lage des Schwerpunktes auf der Hochachse dürfte nur für die Maximale Schräglage von Bedeutung sein…

Gruß Jörg

Berechnungsformel für die Schräglage
Hallo Jörg,

für Deine Frage sind 2 Kräfte relevant, die sind ja hier schon genannt worden. Auch muß die ganze Fahrdynamik ein bißchen vereinfacht werden. Auch kann ich sagen, „Der Kniff mit dem Knie“.

Senkrecht wirkt die Gewichtskraft mit Fg=m*g (g=9,81 m/s²). 90° dazu die Zentrifugalkraft mit Fz=(m*V²)/r.

Grafisch ist das ein Rechteck, mit der resultierenden Kraft als Diagonale. Die Größe der Zentrifugalkraft ändert sich mit der Geschwindigkeit. Die Diagonale im Rechteck wandert weiter aus und entspricht der Kompensierung durch die Neigung.

Angriffspunkt dieser Kräfte ist der Einfachheit halber der Fahrzeugschwerpunkt. Bei aufrechtem Fahrer zum Fahrzeug auf Schnittpunkt zwischen Fahrzeuglängst- und Hochachse.
Schräglange findet also immer zwischen Schwerpunkt und Berührung mit der Fahrbahn statt. Je schmaler der Reifen desto mehr kann man ein Abweichen von der Fahrzeugachse vernachlässigen, da der Reifen in der Kurve auf den Flanken läuft. Es ist deshalb einfacher, sich das Rad als Scheibe vorzustellen.

Verschiebt sich der Schwerpunkt nur auf der senkrechten Fahrzeugachse höher oder tiefer, bleibt dieser Winkel auch gleich. Die Neigung ist also für den Einradfahrer mit Kasten Bier auf der Stirn oder Motorrad bei gleichem Radius und Geschwindigkeit gleich.

Verschiebt sich der Schwerpunkt nicht in der senkrechten Fahrzeugachse, bspw. „hang off“ , ist der Winkel auch gleich (Schwerpunkt zu Fahrbahn!!) nur das das Gesamtmassesystem nachgezogen
werden muß und das Moped aufrechter fahren kann. Was mich immer so erschüttert ist, das man auf den „hang off“ auch erst ziemlich spät gekommen ist.

Aber Du wolltest ja Zahlen. Und ich hoffe mal, das die richtig sind. Lang ist’s her. :wink:

Mathematisch steckt imho folgendes dahinter.
Fz unf Fg stehen senkrecht aufeinander. Da helfen Winkelfunktionen in rechtwinkligen Dreiecken …
Der Winkel der Resultierenden berechnet sich durch tan (neigung) = Fz/ Fg = ((m*v²)r)/ (m*g).
Das liefert schonmal die charmante Erkenntnis, das die Masse unerheblich ist. Du kannst also draufsetzen, wen oder was du willst.

Bleibt also tan (neigung) = v²/(r*9,81).

Um wieviel km/h man pro Grad schneller fahren kann (im Grunde muß, um das Gleichgewicht herzustellen), sagt die Formel.

Linear ist dabei gar nichts. Es gibt Winkel und Geschwindigkeitsbereiche die großen Änderungen unterworfen sind und Bereiche in denen fast lineare Änderungen stattfinden. Das liegt an v² und Winkelfunktion in der Formel.

Am besten schaut man sich die Anstiege der Funktionen in den Diagrammen selbst an.
Excel wäre da 'ne Möglichkeit. Die Differenzen zeigen das sehr schön an.

Achso ja, was auch immer jetzt da steht, das ist ein Modell.
Die Realität ist noch schlimmer, also die Neigung des Mopeds größer, wenn man gerade sitzen bleibt und 130er vorne verwendet.

Außerdem, woher soll wissen, was ich da rechne ?! Nachher stimmt das gar nicht :wink:

Also: DON’T TRY THIS AT HOME KIDS!

Sorry für die Formatierungen, Leerzeichen trennen Werte

  1. Radius ist 50 meter, Geschwindigkeit in km/h
    A1 ist Geschwindigkeit, senkrecht = 0°
    50 =r
    Formel =ARCTAN(POTENZ((A1/3,6);2)/(50*9,81))*180/PI()

km/h Grad Differenz
5 0,23
10 0,90 0,67
15 2,03 1,13
20 3,60 1,57
25 5,62 2,01
30 8,06 2,44
35 10,91 2,85
40 14,13 3,22
45 17,67 3,54
50 21,47 3,80
55 25,45 3,98
60 29,52 4,08
65 33,61 4,09
70 37,63 4,02
75 41,50 3,88
80 45,19 3,69
85 48,66 3,46
90 51,88 3,22
95 54,84 2,97
100 57,56 2,72

  1. Jetzt das, was Du wissen wolltest
    Radius ist 50 meter, Neigung ist variabel
    A1 ist Grad
    Formel = (WURZEL(TAN(A1*PI()/180)*50*9,81))*3,6
    50 = r

Grad km/h Differenz
5 23,58
10 33,48 9,90
15 41,27 7,79
20 48,10 6,83
25 54,45 6,34
30 60,58 6,14
35 66,72 6,14
40 73,03 6,32
45 79,73 6,70
50 87,04 7,31
55 95,28 8,24
60 104,93 9,65
65 116,76 11,83
70 132,16 15,40
75 154,03 21,87
80 189,87 35,85
85 269,55 79,68
89,99 6035,08 5765,53

  1. Geschwindigkeit ist konstant 100km/h , Kurvenradius nicht
    A1= Kurvenradius in Metern
    100 = v
    Formel =ARCTAN((POTENZ((100/3,6);2))/(A1*9,81))*180/PI()

Radius Grad Differenz
5 86,36
10 82,75 3,61
15 79,20 3,55
20 75,73 3,47
25 72,37 3,37
30 69,12 3,24
35 66,01 3,11
40 63,04 2,97
45 60,23 2,82
50 57,56 2,67
55 55,04 2,52
60 52,66 2,37
65 50,43 2,23
70 48,33 2,10
75 46,36 1,97
80 44,51 1,85
85 42,78 1,73
90 41,15 1,63
95 39,62 1,53
100 38,19 1,44

Dankeschön für die ausführliche Antwort. Ich bin der sache nun um einiges weitergekommen. Zur Zeit lese ich den Kniff mnit dem Knie. Wer sich dieses VBuch auch zulegen möchte, sollte darauf auchten, dass man ihm nicht die alte 1999er Version verkauft. Dort sind sehr viele Druckfehler drin. teils an wichtigen stellen.
Wer noch was zu anderen Büchjern derart sagen kann möge dies bitte tun:wink:
Gruß Jörg