Hallo JPL,
danke schonmal für Deine Antwort!
Ich glaube, ich muss noch ein Paar Dinge richtigstellen:
Warum schätzt du nicht per Jacknife oder Bootstrap die
Varianz/ den Standardfehler?
Was soll das bringen bei n ~ 5 ?
Zum Rest noch etwas Hintergrund:
Medizin. Wirkung von Sauerstoffmangel auf Zellen von Menschen mit bestimmten Erkrankungen. Genauer: Auf die Expression von Proteinen. Die Zellen sind superaufwändig zu bekommen, es gibt kaum Patientenmaterial, viele Proben sind vom Operateur nicht gleich eingefroren worden sonden dümpelten viele Stunden bei Raumtemperatur usw., und die Messung der Proteinmenge klappt oft nicht. Folge: Manche Stichproben sind klein. Sehr klein. Im Extremfall liegt nur ein einziger Wert vor.
Es gibt mehrere Gruppen, zB. „krank“ und „gesund“. Es ist nicht anzunehmen, dass die Varianz der Proteinexpression undter der Nullhypothese zwischen „kranken“ und „gesunden“ verschieden ist.
Warum sollte man also nicht die Varianz aus der „gesunden“ Stichprobe (n=5) hernehmen, um auch eine Aussage über die Varianz der „kranken“ Stichprobe zu machen (n=1-2)?
Kann man einfach ein gewichtetes Mittel der
Standardabweichungen nehmen?
Wozu brauchst du das denn? Wenn du ene Stichprobe beschreiben
willst macht mitteln keinen Sinn.
s.o.
Ich bin kein Kenner der Shrinkage-Verfahren, was ich eben auf
die schnelle gefunden habe kommt eher aus dem Berich der
Wavlets und scheint baysanisch zu sein. Wenn du mir da auf die
Sprüge hilfst, kann ich dir vielleicht was dazu sagen.
Ich kenne Shrinkage-Verfahren aus der Analyse von Microarray-Daten:
Tusher et al. PNAS 2001 98(9):5116-21.
Smyth. Stat Appl Genet Mol Biol. 2004 3:Article3
Teilweise ist in einer Gruppe habe nur ein einziger(!)
Messwert. In einer Vergleichsgruppe habe ich mehrere (>5)
Werte. Es soll ein t-Test gemacht werden. Wie ist sowas zu
bewerkstelligen?
Gar nicht. Einen enzelnen Wert kann man nicht mit etwas
anderem vergleichen. Das ist so wie die Frage: Ist 4,999965
von 5 verschieden?
Naja, wenn man doch davon ausgeht, dass alle Stichproben unter der Nullhypothese eine ähnliche Varianz haben (was sie in der Praxis ja auch haben, wie man an den vorliegenden größeren Stichproben sehen kann), dann ist es doch legitim anzunehmen, dass der Einzelwert aus einer Population gezogen wurde, welche eben auch eine solche Varianz hat.
Abgesehen davon gibt es ja auch Einstichproben-Tests, wo geprüft wird, ob ein gegebener, fester Wert innerhalb des (1-alpha)-Konfidenzintervalls für den Parameter (zB. Mittelwert) einer Stichprobe liegt. Hier wäre noch meine Frage: Ist sowas vorzuziehen?
Ausserdem brauchst du schon für die Varianzschätzung
mindestens zwei Werte, sonst ist die Funktion gar nicht
definiert.
Wie gesagt: Informationen über die Varianz LEIHE ich mir von anderen Stichproben, von denen es aus biologischer Sicht vernünftig ist, anzunehmen, dass sie unter der Nullhypothese die gleiche Varianz haben wie die Population, aus der die „n=1-Stichprobe“ gezogen wurde.
Nein. Du kannst ja nicht von Homogenität ausgehen, wenn du gar
nichts über die eine Streuung weisst. Du köntest sie ja nicht
mal testen.
Ich weiß doch was über die Streuung, und zwar aus anderen, sehr ähnlichen Stichproben mit größerem Umfang.
Dein Mittelwert-approach wäre zwar in Ordnung, wenn dich aber
mal jemand man dem Standardfehler oder dem Konfi dafür fragt,
siehst du ein wenig alt aus. 
s.o.!
Hat das mal jemand so gemacht (ist das publiziert)?
Ich hoffe nicht da es grob unwissenschaftlich ist.
Woran machst du die „Unwissenschaftlichkeit“ fest?
Gibt es andere/bessere Verfahren?
Für so kleine Stichproben kann man nur eine deskriptive
machen, jede Statistik ist da ohnehin unglaubwürdig.
Hier geht es nicht um die Aussage, ob Patienten so oder so behandelt werden sollen. Es ist keine Klinische Studie, das Ergebnis führt nicht zu Entlassungen oder Kriegen, es verändert auch kein Lehrbuchwissen und stürzt keine etablierten Theorien. Die Untersuchungen wurden gemacht, um - so gut es technisch und praktisch möglich war! - HINWEISE zu erhalten, was in den Zellen abgehen könnte. Die Ergebnisse stehen nicht für sich alleine, sondern sie sind TEIL von VIELEN ANDEREN Untersuchungen, die erst alle Zusammen ein Bild ergeben. Trotzdem reicht eine rein deskriptive Aussage eben nicht aus; man benötigt IRGENDEINEN Anhaltspunkt für die Beurteilung der gefundenen Unterschiede (zu deinem Beispiel: eine Stichprobe hat einen Wert von 4,900. Die andere Stichprobe hat 5 Werte mit einem Mittel von 5,000. Sind die Mittelwerte in den Populationen nun verschieden? Wenn ich die Standardabw. der zweiten Stichprobe kenne - sagen wir sie ist 0,001 - und ich annehme, dass die Varianzen beider Gruppen unter der Nullhypothese gleich sein sollten, dann kann ich doch auch mit diesen angaben eine Aussage über die Wahrscheinlichkeit machen, mit welcher der Wert der ersten Stichprobe aus einer Population mit dem Mittelwert 5,000 und eben selbiger Standardabweichung gezogen wurde (was hier wohl recht unwahrscheinlich ist.
Ich würde mich sehr freuen, wenn Du das nochmal kommentiertest.
Mache ich irgendwo einen groben Denkfehler?
Danke nochmal und schonmal, LG
Jochen
LG
Jochen