hi,
das ganze isdt meiner meinung nach ein recht banales problem, mit einem übermaßen kompliziert formulierten angabetext…
man zeichne eine gerade. darauf werden 4 punkte verteilt: A B C D
„eine weitere gerade auf der noch 3 dieser punkte liegen“ heißt, dass man durch einen dieser punkte ( ich nehme A) eine weitere gerade zeichnet, auf der dann E und F liegen.
jetzt habe ich einmal 2 garaden und alle 6 punkte verteilt. so wie es die angabe verlangt.
gefragt sind nun alle geraden, die durch genau 2 dieser punkte gehen.
d.h. man müsste alle zweierkombinationen dieser 6 buchstben durchgehen, und schauen, ob da noch einer der anderen punkte draufliegt, oder eben nicht.
AB -liegt C und D drauf. selbiges für AC AD.
AF -liegt E drauf.
systematischg könnt man einen raster machen 6 spalten, 6 zeieln, links inunter und oben drüber jeweils von A bis F beschriften. so hat man alle möglichen kombinationen
die diagonale also die kästchen AA BB usw bis FF fallen sowoeso raus, die machen keinen sinn.
ebenso streicht man alle kästchen raus wo sich in einer zeile und einer spalte zwei buchstaben treffen, die miteinander auf einer dieser geraden liegen.
übrig bleiben folgende geraden ( diese sind lösung der fragestellung):
BE BF
CE CF
DE DF
die kann man dann in der zeichnugn alle einzeichnen.
tja und die die längste/kürzeste misst man dann halt raus.
über die sinnhaftigkeit dessen kann ich leider nicht einmal vermutungen anstellen, find das ganze äusserst sinnentleert, darüberhinaus frag ich mich zu welchem kapitel des lehrstoffes die gnaze sache passen soll… naja *kopfschüttel* die armen kinder die mit so einem mist gequält werden
ich hoff ich konnte helfen 
einen schönen sonntag noch!
liebe grüße
lili