Widerstand berechnen

Guten Tag,

ich hätte da mal ne frage zur Elektrizität: Ich habe eine Schaltung mit 3 widerständen, 2 parallel, der andere davor(in reihe), so wie hier(http://www.elektronik-kompendium.de/sites/slt/schalt…).

Ich möchte wissen, welche Spannung bei R1 abfällt:

U=230V
I=0,5A
R1=?
R2=1,5
R3=20 Ohm

Erstmal Gesamtwiderstand: U/I=R, 460 Ohm
Dann rechne ich: 460 Ohm-20 Ohm= 440Ohm
Weiter: 1/R1 = (1/440 Ohm)-(1/1,5 Ohm)^-1= 0,664…

Ist das so richtig?

mfg guseman

Hallo,

etwas stimmt in der Aufgabenstellung nicht!

U=230V
I=0,5A
R1=?
R2=1,5
R3=20 Ohm

Erstmal Gesamtwiderstand: U/I=R, 460 Ohm

Ok.

Dann rechne ich: 460 Ohm-20 Ohm= 440Ohm

Ok.

Weiter: 1/R1 = (1/440 Ohm)-(1/1,5 Ohm)^-1= 0,664…

Hier ist vermtl. der Fehler und zwar in den Werten, sowie das ^-1 versteh ich nicht.

Da R1 parallel R2 fällt an beiden die gleiche Spannung ab, die kannst Du aber einfach berechnen indem Du den Spannungsabfall an R3 von 230 V abziehst.

R2 soll wohl, seh ich gerade, wohl 1,5 kOhm sein, dann passt es wieder.

Ich komme auf R1 = 622,64 Ohm.

HTH

sonst frag nochmal.

Gruß Volker

Weiter: 1/R1 = (1/440 Ohm)-(1/1,5 Ohm)^-1= 0,664…

Hier ist vermtl. der Fehler und zwar in den Werten, sowie das
^-1 versteh ich nicht.

hoch -1 stellt doch den Kehrwert des bruchs dar, oder?

Da R1 parallel R2 fällt an beiden die gleiche Spannung ab, die
kannst Du aber einfach berechnen indem Du den Spannungsabfall
an R3 von 230 V abziehst.

Sorry, klar, war ja auch ne eigene aufgabe von mir zur übung entworfen. Ich meinte vermutlich den strom, der da durch fließt.

R2 soll wohl, seh ich gerade, wohl 1,5 kOhm sein, dann passt
es wieder.

warum?

Ich komme auf R1 = 622,64 Ohm.

Das kann nicht sein, da 230V/0,5A=460 Ohm, oder?

mfg guseman

Das ^-1 is doch falsch, mit hieße das:

R[!]=((1/R1)+(1/R2))^-1

so wärs richtig, aber denk dir das ^-1 lieber weg.

Hallo

Ich komme auf R1 = 622,64 Ohm.

Das kann nicht sein, da 230V/0,5A=460 Ohm, oder?

Wieso nicht? In einer Parallelschaltung ist der Gesamtwiderstand immer kleiner als der kleinste Einzelwiderstand.

Stell es dir wie eine Wasserröhre vor, die sich gabelt. Je höher der Widerstand, desto dünner die Rohre.
Aber nicht alles fließt durch R1, auch wenn R2 ziemlich dünn ist, fließt auch trotzdem durch.

Gruß
Florian

Das ^-1 is doch falsch, mit hieße das:

R[!]=((1/R1)+(1/R2))^-1

so wärs richtig,

aber denk dir das ^-1 lieber weg.

sorry, jetzt fängst Du an zu raten, das ist in Mathe selten sinnvoll (als erste Näherung bei Iterationen, bei Polynomen 3. Grades für die erste Nullstelle, …)

So wie die Formel jetzt da steht, ist sie ok, Du hast jetzt aber auch eine Klammer um den ganzen rechten Ausdruck gemacht, das ist ein entscheidender Unterschied.

Gruß Volker

Weiter: 1/R1 = (1/440 Ohm)-(1/1,5 Ohm)^-1= 0,664…

hoch -1 stellt doch den Kehrwert des bruchs dar, oder?

Korrekt, aber hier berechnest Du nur den Kerrwert des letzten Terms, Du mischt zwei Berechnungsmöglichkeiten.

Entweder Du rechnest:

1/Rgesamt = 1/R1 + 1/R2 + …

oder bei zwei parallelen Widereständen:

Rgesamt = ( 1/R1 + 1/R2 )^-1

R2 soll wohl, seh ich gerade, wohl 1,5 kOhm sein, dann passt
es wieder.

warum?

Wie unten schon gesagt, der Gesamtwiderstand einer Parallelschaltung ist immer kleiner als der kleinste Widerstand!

Ich komme auf R1 = 622,64 Ohm.

Das kann nicht sein, da 230V/0,5A=460 Ohm, oder?

Das ist korrekt, der Gesamtwiderstand, also muss die Parallelschaltung, wie Du richtig erkannt hast, 440 Ohm haben, das geht aber nicht, wenn R2 nur 1,5 Ohm hat! Deshalb bin ich beim Schreiben darauf gekommen, dass kOhm gemeint sein müssen damit die Aufgabe stimmig wird.

Gruß Volker