Wo ist der Denkfehler beim Siedepunkt ?

Liebe Physiker,

ich habe eine Frage bezüglich der Siedepunktserhöhung aufgrund eines gelösten Stoffes.
Das klingt zuerst natürlich so einfach, dass jeder wohl sagt „Hol doch den Atkins aus dem Regal und guck nach“ - und tatsächlich, da ist es ja auch sehr schön über den herab gesetzten Dampfdruck beschrieben - über die Gibbs-Helmholtz-Gleichung kann man ja auch einfach sehen, dass bei einer Erhöhung der Entropie die freie Enthalpie abnimmt und damit die Lösung „stabiler“ wird - ebenso gibt es das schöne Diagramm, dass die Abhängigkeit des chemischen Potentials von der Temperatur zeigt … und wenn der zugegebene Stoff nur in der flüssigen, nicht aber in der festen und in der Gasphase auftritt, dann wird nur das chemische Potential der flüssigen Phase abgesenkt -> Schnittpunkte zu den anderen Graden verändern sich -> bekannte Effekte erfolgen.

OK, das heißt - ich habe nicht GAR keine Ahnung, ich könnte das Ganze in einer Prüfung auch so erklären, dass jeder meint, ich hätte es voll verstanden - das Problem ist nur, dass mir eine andere Argumentation in den Kopf gekommen ist - mit der ich nun leider zu anderen Ergebnissen komme.
Und da das nun mal nicht sein kann, wollte ich die Experten fragen, wo denn nun mein Denkfehler liegt !

Mein Gedankengang:
Also (ich lasse hier den Dampfdruck mal ganz außen vor) - der Aggregatzustand des reinen Stoffes hängt von der Entropie ab, blöd gesagt - wie nah sich die Teilchen beieinander befinden. Hat die Entropie aufgrund Erwärmung einen bestimmten Wert erreicht, so ist der gasförmige Aggregatzustand erreicht.
Ich stelle mir jetzt einen Zahlenstrahl vor, auf dem ich z.B. den aktuellen Entropiewert des Stoffes verzeichne so wie den besagten, der dem Dampf entspricht - die Strecke dazwischen gibt ja an, um wie viel ich die Entropie (durch Erwärmung) erhöhen muss, damit der Wert erreicht wird, bei dem der gasförmige Zustand vorherrscht.

Nun wird in den Lehrbüchern schön und anschaulich erklärt, warum die Entropie beim Lösen eines anderen Stoffes nun ZUnimmt. Das ist mir zwar klar, auch, dass dadurch der Dampfdruck sinkt - NUR …
Wenn ich jetzt wieder den imaginären Zahlenstrahl hernehme und dort wieder den Entropiewert, jetzt der LÖSUNG markiere, so ist dieser größer und damit NÄHER dran an dem Wert, bei dem es in den gasförmigen Zustand geht ! Der Abstand der beiden Entropien ist geringer geworden !

Ja - es steht im Atkins: " Weil ja ein zusätzlicher Entropiebeitrag entsteht ist das Bestreben zur Verdampfung geringer…"

Bleibe ich aber bei meiner Vorstellung von dem Zahlenstrahl, so müsste ich doch schlussfolgern: Wenn jetzt ein GERINGERER Entropie-UNTERSCHIED zwischen der Lösung und dem Dampf liegt (denn der zugegebne Stoff darf ja nicht in die Gasphase über gehen) - dann muss ich doch, verdammte Axt, WENIGER thermische Energie aufwenden, um den „Dampf-Entropiebetrag“ zu erreichen !!!

Ja, ich kenne die Argumentationen aus den Lehrbüchern und die entsprechenden Formeln - aber ich halte meine Argumentation AUCH für logisch - und ich würde zu gerne wissen, was hieran falsch ist !!!

Für alle Tipps und Antworten bin ich zu tiefst dankbar !!

Viele Grüße, Bettina

es ist recht kompliziert zu verstehen, was du meinst. vielleicht kannst du noch mal irgendwie anders beschreiben, was du meinst…mit link und so…

Hallo,

in welchem Kapitel des Atkins: „Physikalische Chemie“, VCH Verlag (2. Auflage?) steht der folgende Satz?

Ja - es steht im Atkins: " Weil ja ein zusätzlicher
Entropiebeitrag entsteht ist das Bestreben zur Verdampfung
geringer…"

Bring doch einmal ein konkretes Beispiel für deinen „Zahlenstrahl“

Bleibe ich aber bei meiner Vorstellung von dem Zahlenstrahl,

Als Beispiele etwa reines Wasser und dann eine 0,1 molare Saccharose- oder auch eine 0,1 molare Dextrose- Lösung

Für alle Tipps und Antworten bin ich zu tiefst dankbar !!

Siehe deine frühere Frage über die Schmelzdruck-Kurve von Wasser. Da hat man nach einer Antwort leider nichts mehr von dir gehört.

Gruß

watergolf

Hallo watergolf,

der betreffende Satz steht im „großen“ Atkins, um genau zu sein auf Seite 163.

Gruß, Bettina

Hallo chatairliner,

ich kann da nur auf den „Atkins“, Lehrbuch der „Physikalischen Chemie“ verweisen, da steht die Theorie in Kapitel 5.2.2 - aber in jedem anderen Lehrbuch wird es ja ebenso erklärt. Einen Link zu meinen Gedanken hab ich leider nicht - die konnte ich nämlich wo anders noch nicht ausfindig machen.

Gruß, Bettina

Hallo Bettina,

ich habe den Peter W. Atkins: „Physikalische Chemie“ 2. Auflage, VCH- Verlag (1996).
Den Satz: „Weil ja ein zusätzlicher Entropiebeitrag entsteht ist das Bestreben zur Verdampfung geringer …“.
fand ich leider nicht auf Seite 163. Dort befindet sich das Kapitel:
5.2.2 Das chemische Potential einer Mischungskomponente

Auch im gesamten Kapitel und der vorherigen Seite 162 fand ich keinen Hinweis auf den Satz.

Hast du vielleicht die 1. Auflage oder gibt es noch weitere über die 2. hinaus?

Gruß

watergolf

hallo,

ich hab die inzwischen vierte Auflage .

Bettina

Hallo,

ich hab die inzwischen vierte Auflage .

Prima, daß jetzt das Literaturzitat vollständig ist!

Nächste Woche werde ich mir die Stelle im Atkins in der Uni-Bibliothek ansehen.

watergolf

hallo,

er geht zunächst um dein wörtliches Zitat aus dem Atkins vom 04.08.:
“Weil ja ein zusätzlicher Entropiebeitrag entsteht, ist das Bestreben zur Verdampfung geringer…“.
Auf Anfrage teiltest du später mit:
‚der betreffende Satz steht im „großen Atkins“, um genau zu sein auf Seite 163’
Danach erfuhr die geneigte Leserschaft:
„… ich habe inzwischen die vierte Auflage“.

Heute habe ich in P.W. Atkins, J. de Paula: „Kurzlehrbuch Physikalische Chemie“ 4. Auflage (2005) auf Seite 163 nachgesehen. Leider fand ich dort das wörtliche Zitat: “Weil ja ein zusätzlicher Entropiebeitrag entsteht, ist das Bestreben zur Verdampfung geringer …“ nicht.

Eine ähnliche Formulierung findet sich auf S. 244, wo von den Autoren versucht wird, qualitativ zu erklären, warum der Dampfdruck eines Lösungsmittels in der Lösung geringer ist als im reinen Zustand:
Atkins: „Da die Entropie der Lösung größer ist als die des reinen Lösungsmittels, zeigt die Lösung ein geringeres Bestreben, durch Verdampfen des Lösungsmittels die Entropie noch weiter zu erhöhen“.
Unausgesprochen wird selbstverständlich bei dieser Betrachtung an eine gleichbleibende, bestimmte Temperatur jeweils des Lösungsmittels und der Lösung gedacht.

Betrachten wir deinen Teilsatz:
„Ich stelle mir jetzt einen Zahlenstrahl vor, auf dem ich z.B. den aktuellen Entropiewert des Stoffes verzeichne so wie den besagten, der dem Dampf entspricht - …“
verstehe ich so, daß du den Entropiewert von Wasser z.B. bei 0 °C und den Entropiewert von Wasser bei 100 °C (jeweils bei Normaldruck) auf den Zahlenstrahl schreiben willst. Vielleicht bei 25 °C verzeichnest du: „ … den aktuellen Entropiewert des Stoffes …“
Das kannst du selbstverständlich machen.
Jetzt, vor Zugabe des löslichen Stoffes, z.B. Saccharose zur Herstellung einer Lösung, solltest du dich für eine bestimmte Temperatur – z.B. 100 °C, wo es nach deinen Worten:
„ … in den gasförmigen Zustand geht“ - entscheiden, wenn du den Ausführungen bei Atkins folgen willst.

Atkins: „Da die Entropie der Lösung größer ist als die des reinen Lösungsmittels …“
Nach dem Auflösen der Saccharose ist also die Entropie dieser Lösung größer als die des reinen Wassers (immer bei z.B. 100 °C).

Wenn du schreibst:
„Wenn ich jetzt wieder den imaginären Zahlenstrahl hernehme und dort wieder den Entropiewert, jetzt der LÖSUNG markiere, so ist dieser größer und damit NÄHER dran an dem Wert, bei dem es in den gasförmigen Zustand geht !“

darfst du nicht an obigen Zahlenstrahl zwischen 0 °C und 100 °C denken und irgendwie von 25 °C bis 100 °C energie/entropie-mäßig „rutschen“. Du mußt dich für eine bestimmte Temperatur entscheiden, z.B. hier für 100 °C.

Richtig wäre etwa: „Wenn ich jetzt wieder den imaginären Zahlenstrahl hernehme und dort den Entropiewert, jetzt der LÖSUNG bei 1oo °C markiere, so ist dieser größer und damit WEITER weg von dem Wert, bei dem das reine Lösungsmittel bei 100 °C in den gasförmigen Zustand geht“.

Nach Zugabe und nach Auflösung der (auf 100 °C vorgewärmten Saccharose) zum siedenden Lösungsmittel bei 100 °C, erniedrigt sich der Dampfdruck des Lösungsmittels, der Siedevorgang bricht ab.
Es geht zwar auch Wasser in den gasförmigen Zustand über und kondensiert, aber es verdampft/kondensiert weniger Masse als wenn reines Wasser bei 100 °C vorhanden wäre.
Um den Siedevorgang wieder einsetzen zu lassen, den Dampfdruck des Wassers also zu erhöhen, muß man nun MEHR thermische Energie aufwenden um - als Hausnummer angenommen - z.B. 102 °C Lösungstemperatur zu erreichen und nicht: „WENIGER thermische Energie …“, wie du gehofft hast.
Du solltest dir die, von dir angesprochenen Zusammenhänge zwischen thermischer Energie und Entropie klar machen.
Die Entropie ist keine Energieform.
Sie ist wie der Druck, das Volumen und die Temperatur eine Zustandsvariable.
Das Problem mit der Entropie ist, daß es leider kein „Entrometer“ zu ihrer direkten Messung gibt.

watergolf

1 „Gefällt mir“

Hallo „watergolf“,

vielen Dank zwar für Deine ausführliche Antwort, leider jedoch trägt sie nichts zur Lösung des Problems bei.
Ein praktischer Hinweis zu den Lehrbüchern: Es gibt vom Atkins grundsätzlich die „kleine“ und die „große“ Ausgabe(den Unterschied sieht man schon, wenn die beiden nebeneinander im Regal stehen) - wobei der „kleine“ immer das „Kurzlehrbuch“ ist. Wie Du gemerkt hast, unterscheiden sich beide teilweise erheblich - wobei das Kurzlehrbuch zwar einfacher zu lesen ist aber nicht unbedingt empfehlenswert, wenn man einer Sache wirklich auf den Grund gehen möchte.

Falls es Dich interessieren sollte - mittlerweile habe ich mich mit meiner Frage an einen unserer Dozenten gewandt, der mich darüber informierte, dass der Sachverhalt keineswegs trivial sei und die von mir propagierte Verringerung der Entropiedifferenz tatsächlich den Gegebenheiten entspricht.
Für die Beantwortung der Frage ist es entscheidend, dass man nicht die Entropie alleine als Triebkraft für diese Reaktion annimmt - es sei denn, man stellt sich ein isoliertes System (weder Austausch von Energie noch von Materie) dabei vor.
Um die Dinge nochmal etwas anschaulicher darzustellen füge ich hier die Ausführung ein, die ich unserem Dozenten geschickt habe:

" Bei einer gegebenen Temperatur(z.B. 20°C) bildet sich aufgrund des Dampfdruckes oberhalb der Flüssigkeit eine Gasphase aus, die mit dieser im Gleichgewicht steht, wobei die Entropie des Dampfes beträchtlich höher ist als die der Flüssigkeit, obwohl beide Phasen die gleiche Temperatur aufweisen.

Ich bezeichne die ursprüngliche Entropie des flüssigen Lösemittels mit a (a soll ein Wert auf einem gedachten „Zahlenstrahl“ sein, auf dem der Wert der Entropie abgetragen wird).
Die Entropie des darüber liegenden Dampfes soll beträchtlich größer sein -also sagen wir mal a+10.

Da eine Vergrößerung der Entropie durch eine Erhöhung der Temperatur oder besser: Durch Zufuhr von Wärem, erreicht werden kann, formuliere ich:
"Wenn ich ein bestimmtes Quantum dieser Flüssigkeit mit der Entropie a in die Gasphase befördern will, ist das gleichbedeutend damit, dass ich seine Entropie von a auf a+10 erhöhe. Dieser Differenz von 10 „Entropie-Einheiten“ entspricht ein bestimmter Wärmebetrag, der dazu notwendig ist.

Da die Lösung eine höhere Entropie hat als das reine Lösungsmittel, könnte man z.B. annehmen, dass dieser Wert, im Vergleich zu vorher, a+2 beträgt.
Und nun das Problem:
Ich denke nun: Die vorliegende Flüssigkeit hat einen Entropiewert von a+2, der Dampf, wie vorher gesehen, einen Wert von a+10 — dazwischen liegen nur noch 8 Einheiten.
Wenn ich wie analog zu vorher argumentiere ergibt sich:
„Wenn ich ein bestimmtes Quantum dieser Flüssigkeit mit der Entropie a+2 in die Gasphase befördern will, ist das gleichbedeutend damit, dass ich seine Entropie von a+2 (!) auf a+10 erhöhe. Dieser Different von (nur noch) acht (!) Entropie-Einheiten entspricht ein bestimmter Wärmebetrag, der dazu notwendig ist.“

Nun würde ich doch sagen, dass, um eine GERINGERE Differenz der Entropie zu überbrücken auch ein GERINGERER Betrag an Energie notwendig ist - und damit wäre ich schließlich bei der „Behauptung“, dass Salz den Siedepunkt des Wasser SENKT - weil ich ja nach vorangegangener Argumentation davon ausgehen muss, dass die Entropie des flüssigen Zustandes schon höher ist und ich damit „leichter“ und „schneller“, also durch weniger Energie im Zustand der höheren Entropie bin … "

Du siehst also - das von Dir so nett beschriebene „Herumrutschen“ auf dem Zahlenstrahl ist gar nicht notwendig, ich glaube, Dein Denkfehler besteht darin, dass Du den Punkt, an dem die Verdampfung stattfindet, mit dem Siedepunkt gleich setzt. Bedenke: Bei JEDER Temperatur bildet sich über der Flüssigkeit eine Gasphase aus, die mit dieser im (thermodynamischen) Gleichgewicht steht - wobei die Entropien beider Phasen sich selbstverständlich stark unterscheiden !
Wie man auf das der Wirklichkeit entsprechende Verhalten der Lösung kommt, lässt sich auf diversen anderen Wegen, die beispielsweise das chemische Potential (eine nicht ganz einfach erfassbare, aber in der Physikalischen Chemie sehr nützliche Größe) zugrunde legen, recht einfach nachvollziehen.

Natürlich kann es hier keineswegs darum gehen zu „beweisen“, dass Salz den Siedepunkt von Wasser senkt :wink: … aber … allein das genauere Nachdenken über scheinbar triviale Dinge bringt einen oft dazu, zu erkennen, wie wenig trivial sie eigentlich sind ! Dass man, bei der Arbeit im Labor, solche Überlegungen nicht unbedingt braucht, wird wohl jeder schnell bestätigen können. Darüber hinaus aber können sie immens wichtig werden, wenn es darum geht, EIGENE gedankliche Wege einzuschlage und zu entwickeln … Denke einmal daran, wie Studenten der (nun wahrhaftig nicht trivialen) Mathematik damit gequält werden zu BEWEISEN, dass 1 größer ist als 0 !

Im Folgenden werde ich die Antwort meines Dozenten einfügen - vielleicht hilft sie Dir ja auch weiter !

Jetzt schon mit freundlichen Grüßen,
Bettina

"Hallo …

Bravo, dass Sie sich in Ihren Ferien solchen anspruchsvollen und keineswegs
verqueren thermodynamischen Gedanken hingeben.

Ich glaube, der Knackpunkt Ihrer Überlegung liegt an folgender Stelle. Um
überhaupt die Entropie als *alleiniges* Maß für die Triebkraft eines
Prozesses verwenden zu können, müssen Sie den Prozess in Gedanken in einem
*isolierten* System ablaufen lassen. Im isolierten System gibt es keine
Wärme, also fällt auch die Möglichkeit weg, durch Zufuhr von Wärme einen
Prozess anzutreiben. Der Antrieb stammt jetzt (anders als im üblichen
nichtisolierten geschlossenen System) allein aus der Prozessentropie, hier
also, wenn zu Prozessbeginn noch kein Dampf vorhanden ist, aus der
(positiven) Entropiedifferenz zwischen Dampf und Flüssigkeit. Sie
beschreiben richtig, dass diese Entropiedifferenz kleiner wird, wenn man in
der Flüssigkeit eine nichtflüchtige Substanz auflöst. Damit wird die
Triebkraft für den Verdampfungsprozess *kleiner*, und damit wird auch der
resultierende Gleichgewichtsdampfdruck *kleiner*."

Hallo Bettina,

du schreibst u.a.:

Falls es Dich interessieren sollte - mittlerweile habe ich
mich mit meiner Frage an einen unserer Dozenten gewandt, der
mich darüber informierte, dass der Sachverhalt keineswegs
trivial sei und die von mir propagierte Verringerung der
Entropiedifferenz tatsächlich den Gegebenheiten entspricht.

Du propagiertest am 04.08. doch etwas ganz anderes als was oben jetzt von dir plötzlich genannt wird!
Du propagiertest, weniger thermische Energie aufwenden zu müssen (siehe dein Posting vom 04.08.: „… – dann muß ich doch, verdammte Axt, WENIGER thermische Energie aufwenden, um den „Dampf-Entropiebetrag“ zu erreichen!!!“).

Leider beschreibt der Dozent in seinen Ausführungen eine Versuchsanordnung (isoliertes System), die nicht die deine ist. Auch nennt er mit seinen speziellen Versuchen nur bekannte Tatsachen wie sie in den Lehrbüchern stehen.
Der Dozent nimmt ein isoliertes System:

*isolierten* System ablaufen lassen. Im isolierten System gibt
es keine
Wärme, also fällt auch die Möglichkeit weg, durch Zufuhr von
Wärme einen
Prozess anzutreiben. Der Antrieb stammt jetzt (anders als im

Er läßt sich also auf die „Zufuhr von Wärme“, wie du sie propagierst, gar nicht ein.
Auch fand ich in den Ausführungen des Dozenten den Knackpunkt deiner Überlegungen den er nennt:

Ich glaube, der Knackpunkt Ihrer Überlegung liegt an folgender
Stelle. Um

leider nicht expressis verbis angegeben.

Du verstehst den Unterschied zwischen thermischer Energie und Entropie nicht. Vielleicht meint das der Dozent mit: … der Knackpunkt Ihrer Überlegungen …“.

Wichtig ist aber nur, daß die Antwort deines Dozenten für dich etwas zur Lösung deines Problems beigetragen hat und die Angelegenheit damit hoffentlich für dich - aber mit Bestimmtheit für mich - Gott sei Dank erledigt ist.

In meinen Ferien kann ich mich: " … solchen anspruchsvollen und keineswegs verqueren thermodynamischen Gedanken …" leider nicht mehr weiter hingeben.

Grüße

watergolf