Hallo!
Du sagst:
Das Ohmsche Gesetz besagt einen
linearen Zusammenhang zwischen Strom und Spannung, und der ist
zunächst mal gegeben.
Einverstanden.
Aber man unterscheidet nun mal
„ohmsches“ und „nicht-ohmsches“ Verhalten als eben diese
Propotionalität, die in der verkürzten Schreibweise U=R*I nun
mal drin steht!
Nein. Die Gleichung U=R*I bringt keine Proportionalität zum Ausdruck, es sei denn R ist eine Konstante.
Und auch der bekannte Glühdraht zeigt
ohmsches Verhalten … wenn man weiß, dass die
Propotionalitätskonstante Temperaturabhängig ist!
Da die Temperatur von der elektrischen Stromstärke abhängt ist R in diesem Fall implizit ebenfalls stromabhängig. Damit ist die Spannung in diesem Fall nicht proportional zur Stromstärke, was aber - wie Du ganz am Anfang schreibst - die Aussage des ohmschen Gesetzes sei. Mit anderen Worten: Ich kann mit R = U/I den Widerstand eines stromdurchflossenen Leiters auch dann berechnen, wenn U und I einander nicht proportional sind. Auch für die Diode kann man einen Widerstand nach dieser Formel berechnen (er ist in Sperrrichtung nahezu unendlich, in Durchlassrichtung für U0,6V sehr klein). Aber das ohmsche Gesetz, also die Proportionalität von U und I, ist weder für die Glühbirne noch für die Diode gegeben.
Letztlich muss ich wohl auch gegen Wikipedia entgegentreten,
die diese Aussage auch nur in der deutschen Version trifft.
Die englische Wikipedia schreibt:
„Ohm’s law states that, in an electrical circuit, the current passing through a conductor is directly proportional to the potential difference applied across them provided all physical conditions are kept constant.“
Unter „physikalische Bedingungen“ verstehe ich in erster Linie mal die Temperatur, da Luftdruck etc. kaum Einfluss auf die elektrische Leitfähigkeit haben dürften.
Dann lautet der obige Satz:
U ~ I für T = const.
Oder - was äquivalent dazu ist:
U/I = const für T = const.
U/I ist als der elektrische Widerstand R definiert. Und dann heißt das ohmsche Gesetz:
R = const. für T = const.
Und - voila! - das ist genau die Formel für das ohmsche Gesetz, die ich verwendet habe, und die Deinen Einspruch erregt hat.
Michael