Ziegentür - Lexikon der populären Irrtümer S. 350

Hallo Max,
Mit Geld läßt sich alles erklären, also ich will im neuen Jahrtausend nicht gleich 1166,67 verlieren.

Diesen Beitrag hatte ich noch nicht
gelesen, als ich weiter oben behauptet
habe, ich hätte es.

Das, was Du hier schreibst, hat 'was -
dieser Logik kann ich mich nicht ganz
verschließen.

Aber warum klingt mein o.a.
Gedankenexperiment dann so logisch?

Karin

Hi Karin

Simpel Beweis Ich wähle immer Spalte 1
( kann aber irl jede andere sein)
3 Möglichkeiten zum anfangen = Reihe 1 -3
X = durch Mod geöffnete Tür
Z = Ziege A = Auto
wahl…MOD…Erg bei wechsel
Z…A…Z -> Z…A…X -> A

Z…Z…A -> Z…X…A -> A

A…Z…Z -> A…X…Z -> Z

wahl…MOD…Erg kein wechsel
Z…A…Z -> Z…A…X -> Z

Z…Z…A -> Z…X…A -> Z

A…Z…Z -> A…X…Z -> A

Das Problem liegt darin
Das der Mod sich nicht statistisch verhält
und auch ich mich nicht statistisch verhalte
da ich mir meine vorherige Wahl merken kann

-> Ein Würfel kann das nicht!
-> jeder Warscheinlichkeitsansatz
klappt nicht.
ausser bei der ersten Wahl

Phagsae

leider nicht. :wink:
Wenn bei Deinem Experiment die Spielregel so ist, dass Spieler 2 und 3 eine Tür wählen müssen, die Spieler 1 nicht gewählt hat, dann hast Du de facto nur noch 2 Türen und hinter jeder ist mit 50% Wahrscheinlichkeit eine Ziege. Aber die Ausgangsspielregeln sahen anders aus.

Noch ein Gedanke, der vielleicht hilft:
Es sieht vielleicht so aus, als sei die eben geschilderte Situation eingetreten, sobald der Moderator eine Ziegentür geöffnet hat. Man könnte meinen, dann gibt es halt nur noch 2 Türen, und hinter jeder ist mit 50% Chance eine Ziege. Dem ist aber nicht so.
Grund: Der Moderator ist in der Wahl, welche Ziegentür er öffnet, nicht frei. Seine Entscheidung, welche Tür er öffnet, hängt ja von der ersten Wahl des Kandidaten ab. Er wird, wenn dieser eine Ziegentür gewählt hat, nicht genau diese öffnen.
Das ist der Knackpunkt, an dem alles hängt.

Hallo Karin,

Oder hab’ ich da wieder einen Denkfehler?

Ja, leider.
Dadurch, dass der eingeweihte Spieler in jedem Fall schon beim ersten Zug eine der Ziegen reserviert, haben die beiden anderen nur noch die Wahl zwischen zwei Tueren. Damit muss in jedem Fall die Wahrscheinlichkeit 50:50 stehen.
Im urspruenglichen Beispiel gibt es aber beim ersten Zug drei Wahlmoeglichkeiten, die erst im dritten Zug (der zweite ist der des Moderators) auf zwei eingeengt werden.

Ich denke, Barbara hat das sehr gut erklaert.
Mit einer Wahrscheinlichkeit von 2/3 befindet sich nach der ersten Wahl das Auto unter einer der beiden anderen Tueren.
Liebenswuerdigerweise nimmt der Moderator die Ziege weg, und es bleibt die Tuer uebrig, unter der sich (immer noch mit 2/3 Wahrsch.) das Auto befindet.

Gruss, Niels

Hallo Barbara!

[…]

Noch ein Gedanke, der vielleicht hilft:
Es sieht vielleicht so aus, als sei die
eben geschilderte Situation eingetreten,
sobald der Moderator eine Ziegentür
geöffnet hat. Man könnte meinen, dann
gibt es halt nur noch 2 Türen, und hinter
jeder ist mit 50% Chance eine Ziege. Dem
ist aber nicht so.
Grund: Der Moderator ist in der Wahl,
welche Ziegentür er öffnet, nicht frei.
Seine Entscheidung, welche Tür er öffnet,
hängt ja von der ersten Wahl des
Kandidaten ab. Er wird, wenn dieser eine
Ziegentür gewählt hat, nicht genau diese
öffnen.
Das ist der Knackpunkt, an dem alles
hängt.

Und genau das ist mir nach langem naechtlichen Gruebeln auch aufgegangen. Ich haette sonst genau diese Situation geschildert. Danke fuer die geduldigen Versuche, es auch nicht W-Theoretikern verstaendlich zu machen! Ganz ohne „Sigma“ Algebren!

Die Wahl der Tuer ist nicht frei und die Ziegen werden nicht neu gemischt!

Und ich bin einem Irrtum weniger aufgesessen. Sorry fuer meine „Falschaussage“ weiter unten.

Gruss

Jens

Es beruhigt mich ja ungemein, daß Ihr
Euch hier auch nicht einig seid, da komme
ich mir nicht so blöd vor.

Beruhige Dich, Du befindest Dich in bester Gesellschaft. Das Problem wurde vor einigen Jahren öffentlich in der Zeitschrift „Skeptical Inquirer“ von einer Frau namens Marilyn vos Santos vorgestellt und gelöst (sie trug den Titel „intelligenteste Frau der Welt“, woher auch immer).

Sie mußte sich Anfeindungen und falsch begründete Gegenaussagen sogar von Statistik-Professoren (sic!) anhören, bis dann endlich nach Monaten sich langsam die Erkenntnis durchsetzte, daß sie recht hatte…

Also nur kein Minderwertigkeitsgefühl!

Gruß, Kubi

Hallo!

Vielleicht solltest Du das Spiel nicht
denken, sondern wirklich mal spielen,
dann siehst Du, was passiert!

Aber gerne. Ich biete also an, wir spielen es hundert mal. Ich wechsele immer, Du bleibst bei der ersten Wahl. Wer den „Gewinn“ bekommt, zahlt dem anderen xx DM (oder Euro…). Ich überlasse Dir die Wahl des Einsatzes.

Na, wann und wo treffen wir uns, um das Spiel zu machen?

Liebe Grüße

Kubi

Das ist zwar so alles richtig,
trotzdem finde ich es wichtig darauf
hinzuweisen, daß jetzt das Ereignis
„Wechseln, oder nicht“
KEIN Zufallsereignis, sondern
a priori festgelegt ist.
Es kommt also darauf an, ob man dem zweiten
Ereignis Zufälligkeit unterstellt, oder eben nicht.
Insgesamt gilt also:

  1. Fall: ich wechsele immer -> 2/3 Wahrscheinlichkeit fürs Auto
  2. Fall: ich werfe ne Münze -> 1/2 Wahrscheinlichkeit fürs Auto
  3. Fall: ich wechsle nie -> 1/3 Wahrscheinlichkeit fürs Auto

Gruß Wobbel

[Bei dieser Antwort wurde das Vollzitat nachträglich automatisiert entfernt]

der moderator würde im fall von 999
spielen,
wenn sein zutun was mit der
wahrscheinlichkeit zu tun hätte, eben
auch zufällig handeln (nicht indem er auf
jedenfall eine ziegentüre öffnet)auch 333
autos erraten. somit ist die
wahrscheinlichkeit wieder 1/3
auch beim erzwungenen öffnenmüssen einer
ziegentür(weil das auto der mod hat).

Falsch! Der Gag ist ja gerade, daß der Moderator NICHT zufällig handelt. Er weiß, wo eine Ziege ist, und öffnet eine entsprechende Türe!

Nun ist aber die spielregel eine andere:
von vorneherein steht fest daß, eine
Ziegentüre überhaupt nicht mitspielt und
das bei 2 Türen zwischen 2 Möglichkeiten
zu entscheiden ist. als 50/50

Falsch wegen s.o. In der ersten Runde spielen alle Türen mit.

Meinesherachtens war das nicht
unfreundlich,
aber der Hinweis, von vorneherein
feststehenden Tatsachen trotz
verwirrender Angaben, nicht Büchern oder
Lexica trauen sollte war nicht
unbegründet.

Das ist natürlich richtig…

Kubi hat völlig un recht.

Na gut, dann biete ich Dir auch an, das Spiel zu spielen! Du bestimmst den Einsatz. Ich wechsle immer, Du bleibst bei der erstgewählten Türe. Wer die „Ziege“ kriegt, zahlt an den anderen.

Kubi (voller Vertrauen in die Statistik)

Es
will mir nicht in den Kopf, das die
zweite Tuer eine hoehere
Wahrscheinlichkeit des Sieges hat, als
die erste.

Erst 1/1000, dann 1/999, dann 1/998, dann
1/997 … dann 1/2. Wie sollte es anders
sein?

Aber es will Dir in den Kopf, daß die Aktion des Moderators NACHTRÄGLICH die Wahrscheinlichkeit der erstgewählten Tür verändert? Das ist la schon bald esoterisch!
Die Tür, die Du zuerst gewählt hast, hat eine Wahrscheinlichkeit von 1/3 (bzw. 1/1000). Und daran ändert sich auch nach noch so vielen Türöffnungen des Moderators selbstverständlich nichts!

Gruß, Kubi

der moderator würde im fall von 999
spielen,
wenn sein zutun was mit der
wahrscheinlichkeit zu tun hätte, eben
auch zufällig handeln (nicht indem er auf
jedenfall eine ziegentüre öffnet)auch 333
autos erraten. somit ist die
wahrscheinlichkeit wieder 1/3
auch beim erzwungenen öffnenmüssen einer
ziegentür(weil das auto der mod hat).

Falsch! Der Gag ist ja gerade, daß der
Moderator NICHT zufällig handelt. Er
weiß, wo eine Ziege ist, und öffnet eine
entsprechende Türe!

das ist richtig. und drum ist man ja auch irritiert.

Nun ist aber die spielregel eine andere:
von vorneherein steht fest daß, eine
Ziegentüre überhaupt nicht mitspielt und
das bei 2 Türen zwischen 2 Möglichkeiten
zu entscheiden ist. als 50/50

Falsch wegen s.o. In der ersten Runde
spielen alle Türen mit.

bei einer entscheidung ab der 2 ten runde
ergibt sich ein mischergebniss von 2/3 und 1/3 und ist wieder 1/2
weil neu entscheiden heißt ja nicht unbedingt wechseln, sondern wieder eine neue 50 / 50 wahl.
und das triffts auch in wirklichkeit, da eben die einen kandidaten wechseln werden und die anderen nicht(außer denen dies kennen und wahrscheinlichkeitsrechner und das wird sich ausgleichen mit denen die sich nicht vom mod beeinflussen lassen)
somit sinds doch das mittel von 2/3 und 1/3
eben fifty fifty.
Es wird in der Praxis in der 2 ten Runde neu begonnen.

Meinesherachtens war das nicht
unfreundlich,
aber der Hinweis, von vorneherein
feststehenden Tatsachen trotz
verwirrender Angaben, nicht Büchern oder
Lexica trauen sollte war nicht
unbegründet.

Das ist natürlich richtig…

eben selber denken und nachvollziehen ist die voraussetzung, daß mans kapiert.

Kubi hat völlig un recht.

Das war ein Irrtum von mir

Na gut, dann biete ich Dir auch an, das
Spiel zu spielen! Du bestimmst den
Einsatz. Ich wechsle immer, Du bleibst
bei der erstgewählten Türe. Wer die
„Ziege“ kriegt, zahlt an den anderen.

siehe dritte Zeile von oben,
mitlerweile hab auch ichs kapiert.

ulrich

Vielen Dank Euch allen,

nach langem, schweren Leiden (ich konnte gestern fast nicht einschlafen!!!) hab’ ich akzeptiert, daß ich falsch gelegen bin.

Das Beispiel mit den 100 Türen hat mir das linke Aug’ geöffnet, die Erklärung, daß der Moderator in seiner Entscheidung ja nicht „wahrscheinlich“ handelt, das rechte, und mit beiden Augen habe ich mir dann das Diagramm weiter unten mit ZZA und X angesehen, und da war’s dann völlig klar.

Ich bin ja so froh, daß ich Euch hier befragen konnte - als ich das Buch damals gelesen hatte, bin ich fast verzweifelt, weil die meisten überhaupt nicht verstanden haben, wovon ich eigentlich rede! :wink:

Jetzt kann ich mich endlich dem Rest des Buches widmen - das ist mir damals vor Ärger nämlich vergangen.

Danke nochmal für Eure Geduld!

Karin

Ich habe mir das Problem folgendermaßen
überlegt:
Ich mache daraus zwei abhängige
Ereignisse,

Und genau das ist der Fehler.
Die Ereignisse sind nicht unabhängig, da die Tür, die der Moderator auswählt, von der ersten Wahl des Kandidaten abhängt.
Sorry.

Ja
Ufff. Dem stimme ich zu.
Ich glaub, jetzt haben wirs.

Hallo Max,
Mit Geld läßt sich alles erklären, also
ich will im neuen Jahrtausend nicht
gleich 1166,67 verlieren.

Eben. Geht doch!

???
wo liegt der unterschied zwischen abhängig und nicht unabhängig ???

desweiteren hat er recht ,es ist nämlich wahrscheinlich , daß sich ein teil der kandidaten für nicht wechseln (1/3 gewinnchanche) und der andere teil für wechseln entscheidet(2/3 gewinnchance).
damit ergibt sich dann wieder 50/50 im durchschnitt.
ebenso als wie es ja auch gedacht ist daß die entscheidung ( denn da wird er ja gefragt oder wechseln möchte ) im 2 Teil beginnt. eben hier steht es dann 50 /50
mir ist natürlich klar, daß der der sich für wechseln entscheidet trotzdem 2/3 gewinchance hat, aber nur er persönlich.
jetzt aber bitte nicht antworten : darum gehts ja.
da erstens ichs, ja wie mittlerweile alle, verstanden habe und zweitens, weils so auch interresannt zu betrachten ist.

[Bei dieser Antwort wurde das Vollzitat nachträglich automatisiert entfernt]

He das war lustig hast du noch sowas ?
kein text

Ich hab ja auch geschrieben, dass die Ereignisse abhängig sind!!

Mein Weg gilt auch nur für den Kandidaten, der sich rein zufällig für wechseln oder nicht entscheidet. Für denjenigen, der immer wechselt sind es die 2/3 (siehe oben)

[Bei dieser Antwort wurde das Vollzitat nachträglich automatisiert entfernt]

Gegenfrage: Von wem ist denn das Buch? Das MUß ich haben!

Gegenfrage: Von wem ist denn das Buch?

z.B. ein Buchversand:
Lexikon der populären Irrtümer.
Walter Krämer, Götz Trenkler
Preis: DM 16,90

MfG Lutz